
FASTPS: A Fast Publish-Subscribe service using RDMA

Arjun Balasubramanian Mohammed Danish Shaikh

University of Wisconsin - Madison

Abstract

Emerging applications such as Artificial Intelligence and
Serverless Computing have been extremely popular over the
past couple of years. These applications make use of several
underlying sub-systems. The individual sub-systems need to
be performant and scalable so as to meet requirements of these
applications. Publish-Subscribe systems form an integral part
of the pipeline that drives these emerging applications. Our
analysis of workloads from these modern applications indi-
cates that Publish-Subscribe systems do not offer the required
performance and scalability desired by these applications.

We present FASTPS, a new ground-up system that pro-
vides better performance and scalability than existing Publish-
Subscribe systems. FASTPS leverages the benefits of Remote
Direct Memory Access (RDMA) networks to overcome the
challenges imposed by emerging workloads. We evaluate a
prototype implementation of FASTPS and show that FASTPS
achieves good performance and overcomes the scalability bot-
tlenecks suffered by current state-of-the-art Publish-Subscribe
systems.

1 Introduction

Recent trends in computing point towards an increased adop-
tion of artificial intelligence [56] and serverless comput-
ing [27]. Both of these domains rely on a bunch of sub-
systems (hypervisors [14, 61], sandboxed execution environ-
ments [4–7], resource managers [2, 59, 60], schedulers [15,
29, 33, 40, 47, 53, 55], etc) to perform well and scale. One
other such sub-system is the Publish-Subscribe system, where
producers of data write to a service and clients can subscribe
to receive the written data from the service. The Publish-
Subscribe paradigm has been made exceedingly popular by a
myriad of offerings by cloud providers [10, 12, 23, 35, 50].

While the emerging applications mentioned above heavily
use Publish-Subscribe, it is unclear as to whether it meets the
demands imposed by these new applications. These applica-
tions impose a bunch of new demands on Publish-Subscribe

systems. As discussed in Section 2.2, we find that these ap-
plications require low latency and high throughput, support
for a large number of subscribers/consumers of data, and
support for ephemeral or short-lived data. Based on these
new workload characteristics, we find that existing Publish-
Subscribe systems do not scale well for these emerging ap-
plications (Section 2.3). For instance, we find that existing
Publish-Subscribe systems cannot provide both high through-
put and low latency simultaneously and inherently provide
configurations to trade-off between the two. Similarly, exist-
ing Publish-Subscribe systems do not scale well for a large
number of consumers of data. Our measurements indicate that
the system gets bottlenecked by CPU when trying to serve a
large number of consumers.

Remote Direct Memory Access (RDMA) has been success-
ful in helping scale various applications including key-value
stores [20,30,31,42], graph processing systems [54,63], deep
learning [66], and distributed file systems [16,24,25,65]. Due
to the unique features offered by RDMA (Section 3), we be-
lieve that the problems imposed by emerging applications on
Publish-Subscribe systems can be alleviated by deeply inte-
grating RDMA into the design of Publish-Subscribe systems.

We present FASTPS, a new Publish-Subscribe system with
RDMA at the heart of it. FASTPS uses RDMA as a fast trans-
port conduit to meet the required throughput and latency goals.
Additionally, FASTPS uses the right choice of RDMA prim-
itives to overcome scalability issues both while producing
and consuming data. In this paper, we outline a proposed
design for FASTPS (Section 4) and describe details of the
implementation we have so far in Section 5.

FASTPS uses a variety of techniques to overcome the bot-
tlenecks in existing Publish-Subscribe systems. First, to over-
come the CPU bottleneck imposed by multiple consumers,
FASTPS uses one-sided remote reads that bypass the target
CPU. This helps FASTPS scale to a large number of con-
sumers. Second, for producing data, FASTPS leverages two-
sided send/recv operations which incurs CPU involvement.
The CPU involvement helps handle aspects such as replication
for fault-tolerance as well as guaranteeing ordering semantics.

1



We build a prototype of FASTPS from scratch
in C and evaluate its performance against Apache
Kafka [35], an open-source Publish-Subscribe system
(Section 6). The code is open-source and available at
https://github.com/Arjunbala/RDMAPubSub. Our results
show that FASTPS overcomes the challenges imposed by
emerging application workloads and indicates that RDMA
is a good fit for Publish-Subscribe systems. We outline the
future scope of our work in Section 8.

2 Background and Motivation

We start by providing a primer on Publish-Subscribe (referred
to as PUBSUB from here on) and Remote Direct Memory
Access (RDMA). We then examine the requirements raised by
emerging classes of applications such as Artificial Intelligence
and Serverless Computing on PUBSUB systems. We then
study the performance of Apache Kafka [35], an open-source
and widely used PUBSUB system and show that workloads
from emerging applications do not work well with existing
PUBSUB architectures. This motivates a ground-up redesign
of PUBSUB systems.

2.1 Background

2.1.1 Publish-Subscribe

A Publish-Subscribe paradigm is one where senders of mes-
sages, called producers, do not program the messages to be
sent directly to specific receivers, called consumers, but in-
stead categorize published messages into classes, called topics
without knowledge of which consumers, if any, there may be.
PUBSUB systems essentially act as the conduit between pro-
ducers and consumers. They expose APIs for producers to
push records to a specified topic and for consumers to con-
sume records from a particular topic. We now describe the
internal structure of PUBSUB systems. We choose Apache
Kafka as a representative system to elucidate the design de-
scription that follows below.

Internally, a PUBSUB system represents each topic as an
ordered append-only log of records. The log is replicated so
as to provide fault-tolerance. Consensus algorithms [28, 36,
38, 46] are used to ensure that replicas are consistent with
each other and to handle failures. Each topic is assigned a
broker, which also happens to be the leader of the replicated
log. Producers write records to the broker, while consumers
also consume records from the broker instance. The PUBSUB
system acknowledges writes to producers only once it has
been durably committed at a majority of replicas. PUBSUB
systems also generally expose a discovery service to allow
clients (producers/consumers) to bootstrap the location of the
broker. Additionally, for purposes of scalability, a topic may
consists of multiple partitions, each having its own ordered
log and broker. PUBSUB systems typically guarantee ordering

within a partition but not across partitions.

2.1.2 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) provides applica-
tions with low latency access over a network. RDMA allows a
node to perform one-sided read/write operations from/to mem-
ory on a remote node in addition to two-sided send/recv op-
erations. Both user and kernel level applications can directly
issue remote DMA requests (called verbs) on pre-registered
memory regions (MRs). One-sided requests bypass CPU on
the remote host, while two-sided requests require the CPU to
handle them.

Software initiates RDMA requests by posting work queue
entries (WQE) onto a pair of send/recv queues (a queue pair
or "QP"), and polling for their completion from the comple-
tion queue (CQ). On completing a request, the RDMA NIC
(RNIC) signals completion by posting a completion queue
entry (CQE).

A send/recv operation requires both the sender and receiver
to post requests to their respective send and receive queues
that include the source and destination buffer addresses.

2.2 Requirements from emerging applications

The Publish-Subscribe paradigm is increasingly becoming
a popular abstraction in a number of emerging applications.
These applications make use of a myriad of PUBSUB sys-
tems [10, 12, 23, 35, 50].

Below, we list some of the emerging applications and how
they use PUBSUB systems. We also highlight the require-
ments from PUBSUB raised by each use-case -
[A1] Serverless Computing. Function-as-a-service (FaaS)
through offerings such as [11, 13, 22] is becoming a popu-
lar computation model among programmers. This is because
with FaaS, programmers need to worry only about the pro-
gramming logic and aspects such as scaling and resource man-
agement are handled by the serverless computing platform.
Programmers frequently use PUBSUB systems to trigger the
execution of dependent functions (also called lambdas) upon
the execution of a lambda. For instance, one could have a
workflow where one lambda handles the upload of an im-
age to an S3 bucket. This lambda could in turn trigger the
execution of another lambda that resizes the image that was
uploaded in order to create a thumbnail. Similarly, frame-
works such as PyWren [26] can use PUBSUB systems to
trigger executions of successive stages of an execution DAG.
We also believe that PUBSUB systems might be a viable way
to exchange ephemeral data [34, 49] among these lambdas.
These potential applications raise the following requirements
from PUBSUB systems - (i) Lambdas are frequently used to
serve user-facing applications and hence PUBSUB systems
must be able to trigger execution of dependent lambdas or
exchange ephemeral data at low latency. (ii) We also see that

2

https://github.com/Arjunbala/RDMAPubSub


there are scenarios where lambdas might serve background
tasks such as image resize. Here, it is more important to be
throughput oriented than latency sensitive and hence PUBSUB
systems in this scenario must provide high throughput.
[A2] Scaling Artificial Intelligence. With deep-learning
models becoming larger and computationally expensive, dis-
tributed ML training has become a popular technique to re-
duce the training time. A popular architecture for distributed
training is the parameter server model [37] which consists
of a Parameter Server (PS) that holds the learned model pa-
rameters and a bunch of workers that operate on portions
of the data in parallel and periodically push local gradient
updates back to the parameter server. The parameter server
model frequently employs the synchronous training paradigm
where the PS waits for each worker to complete one epoch of
training and push its local gradients. Post this, each worker
pulls the latest copy of the parameters before proceeding to
the next training epoch. We can model this using the PUBSUB
system paradigm where the PS produces a record containing
the latest parameters and the workers consume this record to
start the next epoch of training. This application raises the
following requirements from PUBSUB systems - (i) There is
usually a single PS task and multiple worker tasks. Hence, a
PUBSUB system must be able to support a fan-out structure
with a single producer and multiple consumers. (ii) In order to
reduce the total training time, it is important that the records
are delivered with low latency. Since a training epoch usually
lasts for a significant amount of time, this application does
not have a high throughput requirement from the PUBSUB
system. Similar requirements exist for systems that support
reinforcement-learning [43].
[A3] Change Data Capture (CDC). CDC is a design pat-
tern that allows applications to observe the delta change
in data from a data source. It is typically used to perform
analytics over evolving data. As an example, CDC frame-
works [41] use PUBSUB systems in order to stream updates
from a MySQL database (by registering as a slave to listen to
binary log events) to a stream processing engine [3, 9, 44, 58].
This application raises the following requirements from PUB-
SUB systems - (i) For analytics to be performed in real time,
PUBSUB systems need to serve CDC records to stream pro-
cessing engines at low latency. (ii) Database systems are
typically throughput-oriented and hence will provide a large
number of CDC records. This means that PUBSUB systems
need to serve CDC records to stream processing engines at
high throughput.

Based on the above, we summarize the requirements for
PUBSUB systems raised by these new classes of applications
as below -
[R1] Providing low latency and high throughput. Most
applications require high throughput or low latency or even
both of these simultaneously. Today, PUBSUB systems allow
producers of data to control configurations to achieve these
requirements. For instance, a Kafka producer exposes con-

figurations such as batch size and linger time, where a larger
batch size and longer linger time help in achieving higher
throughput. However, the write throughput to a single Kafka
partition is constrained by two factors - (i) Writes to disk. (ii)
Establishing correct ordering for records within a partition.
To overcome this bottleneck, application programmers can
use multiple partitions. However, the drawback to this ap-
proach is that it is not possible to reason about the ordering of
records across partitions. Hence, it is beneficial to application
programmers if a PUBSUB system can provide both higher
read and write throughput over a single partition.
[R2] Supporting heavy fan-out structure. Most applica-
tions have a single producer of data and multiple consumers
of that data. Hence, it is important for any PUBSUB system to
not become a performance bottleneck while serving multiple
consumers. The general way this is achieved is by making
different consumers read data records from different replicas,
which effectively load balances consumers in order to pre-
vent any single server from being bottlenecked on its CPU.
However, when there is a heavy fan-out structure, CPU will
easily become a bottleneck while serving consumers. One
potential way to counteract this might be to increase the num-
ber of replicas, but this in turn would severely degrade the
producer’s write throughput. Hence, PUBSUB systems today
have an inherent problem with this requirement.
[R3] Handling ephemeral data. Many modern applications
do not have a hard requirement for data records to be persisted
for extended periods of time. This is particularly true for
ephemeral or intermediate data that is generated by serverless
and big data frameworks. The useful lifetime for such data is
usually just a few seconds. Such applications would be willing
to trade-off durability of data for better performance. Hence,
they can be sufficiently reliable with in-memory replication.

2.3 Apache Kafka Performance Analysis

We analyze the performance of Apache Kafka with respect to
the aforementioned requirements. In this work, we primarily
focus on requirement R1 and R2. To carry out this study, we
setup a 10-node Apache Kafka cluster. In the Kafka configu-
ration, we disable the batching of records, set the number of
replicas to be 1, and write the ordered logs to tmpfs [8] so as
to have in-memory logging of records. We produce a million
records of 64 bytes each from a single producer and configure
a variable number of consumers to each consume all of these
records.

When a single producer and consumer are involved, we
observe a producer throughput of ~15 Mbps and a consumer
throughput of ~20 Mbps. Since these numbers are with no
batching of records, it indicates that PUBSUB can in the best
case offer micro-second level latency for both producing and
consuming records. However, this comes at the cost of lower
throughput. Higher throughput can be achieved by batching
records, but this comes at the cost of inflated latency. Hence,

3



Figure 1: Variation of the cumulative through-
put offered to Kafka consumers as the number
of consumers increases

Figure 2: Variation of the throughput expe-
rienced by a single Kafka consumer as the
number of competing consumers increase

Figure 3: Factor of increase in CPU con-
tention at the Kafka broker instance as the
number of consumers increase

configuring Apache Kafka to simultaneously achieve low
latency and high throughput is a challenge. This means that
requirement R1 is hard to realize with Apache Kafka.

Next, we conduct a series of measurements to analyze re-
quirement R2. Figure 1 shows the variation of the cumulative
throughput across all consumers as we vary the number of
consumers. We notice that the throughput initially increases
at a near linear rate. However, we observe that throughput flat-
tens as we approach 8 consumers. Further, from Figure 2, we
observe that the throughput of a single consumer decreases as
the number of competing consumers increase. Figure 3 shows
that this problem exists due to increased CPU contention.
These trends suggest that a heavy fan-out structure is a poor
fit for existing PUBSUB systems and hence they fare poorly
with respect to requirement R2.

3 RDMA as a fundamental building block

From Section 2.3, it is evident that existing PUBSUB systems
do not meet the requirements imposed by emerging classes
of applications. We believe that employing the use of RDMA
networks can help remove the bottlenecks observed. We thus
design FASTPS, a PUBSUB system that not only employs
RDMA as a fast transport conduit, but also deeply integrates
RDMA into its core design.

Below, we highlight some of the key features offered by
RDMA and how we utilize them in the design of FASTPS -
[F1] RDMA one-sided reads and writes bypass the involve-
ment of the remote CPU since an RDMA-capable NIC can di-
rectly issue DMA requests and read/write data from/to pinned
memory regions. We thus leverage one-sided read operations
to support heavy fan-out structures, ensuring that the server’s
CPU does not become a bottleneck even while it serves mul-
tiple consumers.
[F2] Inbound verbs, including recv and incoming one-sided
read/write, incur lower overhead for the target, so a single
node can handle many more inbound requests than it can ini-
tiate itself. This means that it is more efficient for consumers
in FASTPS to poll for the availability of new records, rather

than resort to notification-based mechanisms. We exploit this
asymmetry to improve the scalability of the system.
[F3] For one-sided transfers, the receiver grants the sender
access to a memory region through a shared, secret 32-bit
"rkey". When the receiver RNIC processes an inbound one-
sided request with a matching rkey, it issues DMAs directly
to its local memory without notifying the CPU. FASTPS
employs this feature to allow multiple consumers to consume
data from a shared, remote memory region and thus avoids
unnecessary copying of data.

4 System Design

This section presents the internal design of FASTPS. In Sec-
tion 4.1, we discuss the architecture of FASTPS. We present
the producer and consumer APIs in Sections 4.2.1 and 4.2.2
respectively. Finally, we describe the producer and consumer
flows in Sections 4.3 and 4.4 respectively.

4.1 Architecture

FASTPS consists of servers, producer library, and consumer
library components as described in the following subsections
(refer Figure 4). Clients can utilize the producer and consumer
library to produce and consume records respectively. Like
Apache Kafka [35], we assume that a topic may consist of
multiple partitions for purposes of scalability.

FASTPS consists of multiple servers that store the data pro-
duced by producer(s) in order to be consumed by consumer(s).
Each server hold multiple individual buffers to serve produc-
ers and consumers interested in different topics. There are
two types of buffers pertaining to a partition within a topic - a
private producer buffer and a corresponding consumer buffer.
Producer buffer. This is a circular buffer that the producer
library uses to perform RDMA writes consisting of the data
to be written into FASTPS. This buffer is private to each pro-
ducer in order to provide isolation from other producers.
Consumer buffer. This buffer keeps track of committed data
after consensus. It also serves as a way for consumer library to

4



Figure 4: FastPS Architecture

know about the availability of committed data to be consumed
by consumer(s).

An advantage of using RDMA is that both producer and
consumer buffers can be spread across the entire cluster with-
out incurring too much performance degradation. This makes
aspects like load balancing easier to handle. This is similar in
spirit to [45].

4.2 APIs

4.2.1 Producer library APIs

The producer library provides the following APIs to the pro-
ducers:
InitProducer(application name, topic, number of parti-
tions): When a producer wants to start producing data for
a new topic, it has to call into the InitProducer API provided
by the producer library and provide the application name,
name of the topic and number of partitions to be created for
the topic. The producer library thereafter informs a subset of
servers to initialize their respective data structures. This sub-
set can be decided so as to load balance the usage of servers
in the cluster. The selected servers register a new, private
memory region for the producer, initialize the data structures
that will be used to hold the produced data, and finally return
the starting address of the memory region that the producer
library can perform RDMA writes into.

Figure 5: Producer Flow

Produce(topic, partition, data): When a producer wants to
produce data for a given partition in a topic, it calls into the
Produce API provided by the producer library. We outline the
producer flow in Section 4.3.

4.2.2 Consumer library APIs

The consumer library provides the following APIs to the con-
sumers:
InitConsumer(topic): When a consumer wants to starts con-
suming data from a given topic, it has to call into the InitCon-
sumer API provided by the consumer library and provide the
name of the topic it wants to subscribe to. The consumer li-
brary thereafter starts polling on any server’s consumer buffer
for the given topic.
Consume(): When a consumer wants to consume data pro-
duced in a given partition of a topic, it calls into the Consume
API provided by the consumer library. We outline the con-
sumer flow in Section 4.4.

4.3 Producer Flow

As depicted in Figure 5, the following sequence of events
happen when a producer wants to produce a record:

1. The producer writes the record into a
FASTPS private producer buffer using
IBV_WR_RDMA_WRITE_WITH_IMM RDMA
verb. The IBV_WR_RDMA_WRITE_WITH_IMM verb
provides the capability to write data to a remote memory
region while also notifying the remote CPU about this
operation with inlined immediate data. We write the
producer record into the remote memory and specify the
length of the producer record in the immediate data.

5



(a) (b)

(c) (d)

Figure 6: FASTPS consumer flow (a) Polling for length (b) Reading length (c) Reading record (d) Polling for length

2. The FASTPS server performs consensus and ordering of
the written record. Note that this step requires involve-
ment of CPU.

3. The FASTPS server writes the record into corresponding
consumer buffers. For a local write, this would simply
involve copying the data. Remote writes can be done
using one-sided RDMA writes.

4. The FASTPS server sends an acknowledgement back to
the producer.

4.4 Consumer Flow

As shown in Figure 6, the following sequence of events hap-
pen when a consumer wants to consumer a record:

1. The consumer polls at the current position of the con-
sumer buffer in FASTPS server till it encounters a non-
zero length using the IBV_WR_RDMA_READ RDMA
verb.

2. When a record is available, the consumer reads the
records length (lets say L) from FASTPS server and in-
crements the remote pointer to point to the data. This can
be done deterministically since a fixed number of bits
are used to represent the length, which both the producer
and consumer are aware of.

3. The consumer reads the L bits of record data from the
FASTPS server.

4. The consumer increments the pointer pointing to the
consumer buffer of FASTPS server by L bits and starts
polling for the length of the next record.

5 Implementation

We implemented a simplified version of FASTPS wherein
only a single topic with a single partition is supported. Hence,
we did not implement replication, consensus, or failure han-
dling. Our implementation uses the rdma_cma [51] which
provides library functions for establishing communication
over RDMA. It works in conjunction with the verbs API that
is provided by the libibverbs [52] library. The libibverbs li-
brary provides the underlying interfaces needed to send and
receive data. FASTPS has been implemented in 1090 lines of
C code spread across server, producer client and consumer
client components as described in the following subsections.
Each component implements an asynchronous event driven
communication interface on top of the rdma_cma library.

5.1 Server

As described in Section 4, a FASTPS server maintains pri-
vate producer buffer and corresponding consumer buffer for a
topic. Subsequently, producers and consumers interact with
the FASTPS server using two-sided and one-sided RDMA
operations in order to produce and consume data records
respectively.

5.2 Producer Client

The producer client implements the APIs described in Section
4.2.1. On receiving an Init API call, the producer client regis-
ters a private producer buffer with a FASTPS server for the
mentioned topic. Subsequently, on receiving a Produce API
call, the producer client writes the record into the buffer reg-
istered with the FASTPS server. Two-sided send/recv RDMA
operations are used by the producer client.

6



(a) (b)

Figure 7: Macrobenchmarks comparing the performance of FASTPS with
Apache Kafka in terms of (a) Cumulative throughput across all consumers as
the number of consumers vary (b) Throughput of a single consumer as the
number of competing consumers vary.

5.3 Consumer Client

The consumer client implements the APIs described in Sec-
tion 4.2.2. On receiving an Init API call, the consumer client
retrieves the rkey and remote address to the consumer buffer
(refer Section 4) corresponding to the topic mentioned in the
call. This design choice follows from feature F3 mentioned
in Section 3. Subsequently, on receiving a Consume API call,
the consumer client starts polling at the remote address to de-
tect when a data record is written. This design choice follows
from the feature F2 mentioned in Section 3. The consumer
client uses one-sided RDMA read operations for reading data
remotely from the FASTPS server.

6 Evaluation

We evaluate FASTPS on a 10-machine cluster deployed on
CloudLab [19] and compare the performance of FASTPS
against Apache Kafka. We also carry out micro-benchmarks
to show the performance impact of varying record sizes.

6.1 Experimental Setup

Testbed. Our testbed has 10 machines, each having 16 cores
and 64GB memory. The machines are connected through
Mellanox SX6036G switches via a 40Gbps uplink. All of the
machines use Ubuntu 16.04 and Mellanox OFED version 4.6.

Baseline Stack. We compare the performance of FASTPS
against Apache Kafka. To enable a fair comparison with our
initial implementation of FASTPS, we configure Kafka to
disable the batching of records, disable log replication by
setting the number of replicas to be 1, and record logs in
tmpfs so as to store data in-memory.

Metrics. We measure throughput as the total amount of data
produced/consumed divided by the total time taken. We mea-
sure latency as the total amount of time taken to produce/con-
sume the record.

6.2 Macrobenchmarks

In this section, we compare the performance of FASTPS
against Apache Kafka. For each system, we first produce
1 million records, where each record has a size of 64 bytes.
We then configure a varying number of consumers to consume
these records simultaneously.
Producer Throughput. From our measurements, we no-
tice that FASTPS offers a producer throughput of ~16 Mbps,
which is about 1 Mbps greater than the producer throughput
offered by Apache Kafka. In the producer flow, both FASTPS
and Apache Kafka incur CPU involvement and hence we do
not see much of a performance difference. The slight increase
in performance observed in FASTPS can be attributed to the
fact that the TCP/IP stack in the kernel is bypassed.
Consumer Throughput. We configure a variable number of
consumers to simultaneously consume the produced records.
We then measure two quantities - (i) Cumulative Throughput,
which is the sum of throughputs across all consumers (ii) Sin-
gle Consumer Throughput, which is the throughput observed
by a single chosen consumer. We confirm using the top com-
mand that the FASTPS server CPU is not involved in the con-
sumer flow. Figure 7a compares FASTPS and Apache Kafka
on cumulative throughput as the number of consumers vary.
We observe that FASTPS offers near linear increase in cumu-
lative throughput while it saturates for Apache Kafka. Figure
7b compares FASTPS and Apache Kafka on the throughput of
a single consumer. We observe that in FASTPS, a consumer
has nearly constant throughput irrespective of the number of
competing consumers. However, in Apache Kafka, a single
consumer’s throughput nearly drops by half as we vary the
number of consumers from 1 to 8. Both of these trends indi-
cate that FASTPS offers better scalability for heavy fan-out
structures with a large number of consumers.

6.3 Microbenchmarks

We perform a micro-benchmark to evaluate the performance
of FASTPS as the record size changes. In this experiment, we
consider a single producer producing 1 million records of each
presented size and a single consumer consuming these records.
Figure 8 shows the variation in producer throughput as record
size changes. We see an increase in producer throughput as the
record size increases and it caps off at ~2 Gbps as the record
size becomes greater than 50KB. We did not investigate the
reason for this, but we believe that it could be due to the fact
that multiple PCIe transactions are required for transferring
larger data over the PCIe channel between the RNIC and
the memory subsystem. Figure 9 and Figure 10 capture the
throughput and latency for consuming records when a single
consumer is involved. We notice an increase in throughput
which caps at ~8Gbps. We believe that throughput in this case
gets limited by the PCIe channel, but we have not verified this.
Latency starts increasing as the record size exceeds 50KB.

7



101 102 103 104 105 106

Record Size (bytes)

0

500

1000

1500

2000

2500

3000

P
ro

du
ce

r
T

hr
ou

gh
pu

t (
M

bp
s)

Figure 8: Variation of the producer throughput
as the size of the produced record changes

101 102 103 104 105 106

Record Size (bytes)

101

102

103

104

C
on

su
m

er
T

hr
ou

gh
pu

t (
M

bp
s)

Figure 9: Variation of the consumer through-
put as the size of the consumed record changes

101 102 103 104 105 106

Record size (bytes)

102

103

La
te

nc
y 

(u
s)

Figure 10: Variation of latency for consuming
a record as the size of the consumer record
changes

We believe that this may be due to multiple PCIe transactions
being involved as in the producer case.

7 Related Work

FASTPS builds upon a rich line of work that investigates
how to efficiently leverage the advantages offered by RDMA
into system design to support various applications. However,
to our knowledge, no prior work has looked at the require-
ments for PUBSUB systems imposed by emerging applica-
tions, benchmarked the performance of existing PUBSUB
systems for these workloads, and deeply integrated RDMA
into PUBSUB system design.
Key-Value Stores. FARM [20] shows how RDMA can be
used to build a key-value store that offers high throughput
and low latency. HERD [30] focuses its design on reducing
network round trip time while using efficient RDMA primi-
tives. Interestingly, the paper shows that single-RTT designs
with server CPU involvement can outperform single-sided op-
erations when they require multiple round-trips. We leverage
similar observations in FASTPS to design the producer flow.
Our design philosophy is very similar to PILAF [42], where
get operations are served using one-sided RDMA operations,
but put operations involve the CPU in order to synchronize
memory access. Similarly, [31] studies the right choice of
RDMA primitives for use in key-value stores.
Distributed File Systems. Several distributed file systems
use RDMA as a drop-in replacement of traditional networking
protocols [16, 24, 25, 65]. OCTOPUS [39] and ORION [67]
leverage RDMA to build high-performance distributed file
systems for NVMM-based storage.
Transactions and Database Management. There has been
a wide variety of work that utilize RDMA features to speed up
transaction processing [17, 18, 21, 32, 57, 68]. DRTM+H [64]
performs a phase-by-phase analysis of optimistic concurrency
control and identifies the right RDMA primitive for each
phase. Active-Memory replication [69] is a technique that
leverages RDMA to eliminate computational redundancy dur-
ing replication in database systems.

Consensus using RDMA. FASTPS currently does not im-
plement replication. However, to support replication, FASTPS
would need to design an efficient replicated state machine
mechanism to replicate log records. DARE [48] designs a
replicated state-machine that efficiently utilizes RDMA primi-
tives to build a strongly-consistent key-value store. APUS [62]
shows how to scale Paxos using RDMA.

8 Future Work

Our current prototype assumes a single topic and single par-
tition as a proof-of-concept. We wish to build a full-fledged
Publish-Subscribe system that supports multiple topics and
partitions, along with features like configurable replication,
batching, and failure handling. This would require us to re-
search on what RDMA primitives need to be used to effi-
ciently implement consensus protocols used in systems like
Kafka. Additionally, we would like to explore different data
structures for the consumer buffer so as to possibly reduce the
number of network round-trips to 1 for consuming records
and also explore if any optimizations are feasible for handling
small/large records. Finally, we wish to integrate FASTPS
with systems for emerging applications such as Ray [43] and
OpenWhisk [1], and evaluate the performance implications.

9 Conclusion

We show that emerging applications such as serverless com-
puting and scaling artificial intelligence require PUBSUB sys-
tems to provide low latency and high throughput, support
heavy fan-out structure, and handle ephemeral data. Further,
we use Apache Kafka as a case study to delineate that current
PUBSUB systems do not meet the requirements imposed by
these emerging classes of applications. We propose FASTPS
and implement a simple prototype to show that RDMA can
be used as a fundamental building block to address the bot-
tlenecks observed with current PUBSUB systems. The results
from our simple prototype show promise and we believe that
FASTPS has the potential to serve as an ideal PUBSUB system

8



for meeting the requirements of emerging applications.

10 Acknowledgements

We would like to thank Professor Michael Swift for giving
us the opportunity to work on this project. His advice during
office hours and classroom lectures helped us in successfully
completing this project. We would also like to thank our advi-
sor Aditya Akella for his valuable comments and insights.

References

[1] IBM Bluemix Openwhisk. https://www.ibm.com/
cloud-computing/bluemix/openwhisk, 2017.

[2] Apache Hadoop Submarine. https://hadoop.
apache.org/submarine/, 2019.

[3] Apache Spark Streaming. https://spark.apache.
org/streaming/, 2019.

[4] Docker. https://www.docker.com/, 2019.

[5] Firecracker MicroVM. https://
firecracker-microvm.github.io/, 2019.

[6] gVisor. https://github.com/google/gvisor,
2019.

[7] Kata Containers. https://katacontainers.io/,
2019.

[8] tmpfs - A virtual memory filesystem. http://man7.
org/linux/man-pages/man5/tmpfs.5.html, 2019.

[9] Apache Flink. https://flink.apache.org/, 2019.

[10] AWS Kinesis. https://aws.amazon.com/kinesis/,
2019.

[11] AWS Lambda. https://aws.amazon.com/lambda/,
2019.

[12] AWS Simple Queuing Service. https://aws.amazon.
com/sqs/, 2019.

[13] Azure Functions. https://azure.microsoft.com/
en-us/services/functions/, 2019.

[14] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I.,
AND WARFIELD, A. Xen and the art of virtualization.
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (New York, NY, USA,
2003), SOSP ’03, ACM, pp. 164–177.

[15] BOUTIN, E., EKANAYAKE, J., LIN, W., SHI, B., ZHOU,
J., QIAN, Z., WU, M., AND ZHOU, L. Apollo: Scal-
able and coordinated scheduling for cloud-scale comput-
ing. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (Berke-
ley, CA, USA, 2014), OSDI’14, USENIX Association,
pp. 285–300.

[16] CALLAGHAN, B., LINGUTLA-RAJ, T., CHIU, A.,
STAUBACH, P., AND ASAD, O. Nfs over rdma. In
Proceedings of the ACM SIGCOMM Workshop on
Network-I/O Convergence: Experience, Lessons, Impli-
cations (New York, NY, USA, 2003), NICELI ’03, ACM,
pp. 196–208.

[17] CHEN, H., CHEN, R., WEI, X., SHI, J., CHEN, Y.,
WANG, Z., ZANG, B., AND GUAN, H. Fast in-memory
transaction processing using rdma and htm. ACM Trans.
Comput. Syst. 35, 1 (July 2017), 3:1–3:37.

[18] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN,
H. Fast and general distributed transactions using rdma
and htm. In Proceedings of the Eleventh European
Conference on Computer Systems (New York, NY, USA,
2016), EuroSys ’16, ACM, pp. 26:1–26:17.

[19] CloudLab. https://www.cloudlab.us/, 2019.

[20] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O.,
AND CASTRO, M. Farm: Fast remote memory. In
Proceedings of the 11th USENIX Conference on Net-
worked Systems Design and Implementation (Berke-
ley, CA, USA, 2014), NSDI’14, USENIX Association,
pp. 401–414.

[21] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE,
E. B., RENZELMANN, M., SHAMIS, A., BADAM, A.,
AND CASTRO, M. No compromises: Distributed trans-
actions with consistency, availability, and performance.
In Proceedings of the 25th Symposium on Operating
Systems Principles (New York, NY, USA, 2015), SOSP
’15, ACM, pp. 54–70.

[22] Google Cloud Functions. https://cloud.google.
com/functions/, 2019.

[23] Google Pub/Sub. https://cloud.google.com/
pubsub/docs/, 2019.

[24] GUZ, Z., LI, H. H., SHAYESTEH, A., AND BALAKR-
ISHNAN, V. Performance characterization of nvme-over-
fabrics storage disaggregation. ACM Trans. Storage 14,
4 (Dec. 2018), 31:1–31:18.

[25] ISLAM, N. S., WASI-UR RAHMAN, M., LU, X., AND
PANDA, D. K. High performance design for hdfs with
byte-addressability of nvm and rdma. In Proceedings of
the 2016 International Conference on Supercomputing

9

https://www.ibm.com/cloud-computing/bluemix/openwhisk
https://www.ibm.com/cloud-computing/bluemix/openwhisk
https://hadoop.apache.org/submarine/
https://hadoop.apache.org/submarine/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://www.docker.com/
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://github.com/google/gvisor
https://katacontainers.io/
http://man7.org/linux/man-pages/man5/tmpfs.5.html
http://man7.org/linux/man-pages/man5/tmpfs.5.html
https://flink.apache.org/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/lambda/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.cloudlab.us/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/pubsub/docs/
https://cloud.google.com/pubsub/docs/


(New York, NY, USA, 2016), ICS ’16, ACM, pp. 8:1–
8:14.

[26] JONAS, E., PU, Q., VENKATARAMAN, S., STOICA, I.,
AND RECHT, B. Occupy the cloud: Distributed comput-
ing for the 99In Proceedings of the 2017 Symposium on
Cloud Computing (New York, NY, USA, 2017), SoCC
’17, ACM, pp. 445–451.

[27] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V.,
TSAI, C.-C., KHANDELWAL, A., PU, Q., SHANKAR,
V., CARREIRA, J., KRAUTH, K., YADWADKAR, N.,
GONZALEZ, J. E., POPA, R. A., STOICA, I., AND PAT-
TERSON, D. A. Cloud programming simplified: A
berkeley view on serverless computing, 2019.

[28] JUNQUEIRA, F. P., REED, B. C., AND SERAFINI,
M. Zab: High-performance broadcast for primary-
backup systems. In Proceedings of the 2011 IEEE/I-
FIP 41st International Conference on Dependable Sys-
tems&Networks (Washington, DC, USA, 2011), DSN
’11, IEEE Computer Society, pp. 245–256.

[29] KAFFES, K., YADWADKAR, N. J., AND KOZYRAKIS,
C. Centralized core-granular scheduling for serverless
functions. In Proceedings of the ACM Symposium on
Cloud Computing (New York, NY, USA, 2019), SoCC
’19, ACM, pp. 158–164.

[30] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM
(New York, NY, USA, 2014), SIGCOMM ’14, ACM,
pp. 295–306.

[31] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G.
Design guidelines for high performance RDMA sys-
tems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16) (Denver, CO, June 2016), USENIX
Association, pp. 437–450.

[32] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G.
Fasst: Fast, scalable and simple distributed transac-
tions with two-sided (RDMA) datagram rpcs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (Savannah, GA, Nov. 2016),
USENIX Association, pp. 185–201.

[33] KARANASOS, K., RAO, S., CURINO, C., DOUGLAS,
C., CHALIPARAMBIL, K., FUMAROLA, G. M., HED-
DAYA, S., RAMAKRISHNAN, R., AND SAKALANAGA,
S. Mercury: Hybrid centralized and distributed schedul-
ing in large shared clusters. In Proceedings of the 2015
USENIX Conference on Usenix Annual Technical Con-
ference (Berkeley, CA, USA, 2015), USENIX ATC ’15,
USENIX Association, pp. 485–497.

[34] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A.,
PFEFFERLE, J., AND KOZYRAKIS, C. Pocket: Elas-
tic ephemeral storage for serverless analytics. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18) (Carlsbad, CA, Oct. 2018),
USENIX Association, pp. 427–444.

[35] KREPS, J. Kafka : a distributed messaging system for
log processing.

[36] LAMPORT, L. The part-time parliament. ACM Trans.
Comput. Syst. 16, 2 (May 1998), 133–169.

[37] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA,
A. J., AHMED, A., JOSIFOVSKI, V., LONG, J.,
SHEKITA, E. J., AND SU, B.-Y. Scaling distributed
machine learning with the parameter server. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14) (Broomfield, CO, Oct. 2014),
USENIX Association, pp. 583–598.

[38] LIN, W., YANG, M., ZHANG, L., AND ZHOU, L. Paci-
fica: Replication in log-based distributed storage sys-
tems. Tech. Rep. MSR-TR-2008-25, February 2008.

[39] LU, Y., SHU, J., CHEN, Y., AND LI, T. Octopus:
an rdma-enabled distributed persistent memory file
system. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17) (Santa Clara, CA, July 2017),
USENIX Association, pp. 773–785.

[40] MAHAJAN, K., BALASUBRAMANIAN, A., SINGHVI,
A., VENKATARAMAN, S., AKELLA, A., PHAN-
ISHAYEE, A., AND CHAWLA, S. Themis: Fair and
efficient gpu cluster scheduling, 2019.

[41] Maxwellś Daemon. https://maxwells-daemon.io/,
2019.

[42] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided
rdma reads to build a fast, cpu-efficient key-value store.
In Proceedings of the 2013 USENIX Conference on An-
nual Technical Conference (Berkeley, CA, USA, 2013),
USENIX ATC’13, USENIX Association, pp. 103–114.

[43] MORITZ, P., NISHIHARA, R., WANG, S., TUMANOV,
A., LIAW, R., LIANG, E., ELIBOL, M., YANG, Z.,
PAUL, W., JORDAN, M. I., AND STOICA, I. Ray: A
distributed framework for emerging AI applications. In
13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18) (Carlsbad, CA, Oct.
2018), USENIX Association, pp. 561–577.

[44] NOGHABI, S. A., PARAMASIVAM, K., PAN, Y.,
RAMESH, N., BRINGHURST, J., GUPTA, I., AND
CAMPBELL, R. H. Samza: Stateful scalable stream
processing at linkedin. Proc. VLDB Endow. 10, 12 (Aug.
2017), 1634–1645.

10

https://maxwells-daemon.io/


[45] NOVAKOVIC, S., DAGLIS, A., BUGNION, E., FALSAFI,
B., AND GROT, B. The case for rackout: Scalable data
serving using rack-scale systems. In Proceedings of the
Seventh ACM Symposium on Cloud Computing (New
York, NY, USA, 2016), SoCC ’16, ACM, pp. 182–195.

[46] ONGARO, D., AND OUSTERHOUT, J. In search of an
understandable consensus algorithm. In Proceedings of
the 2014 USENIX Conference on USENIX Annual Tech-
nical Conference (Berkeley, CA, USA, 2014), USENIX
ATC’14, USENIX Association, pp. 305–320.

[47] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND
STOICA, I. Sparrow: Distributed, low latency schedul-
ing. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles (New York, NY,
USA, 2013), SOSP ’13, ACM, pp. 69–84.

[48] POKE, M., AND HOEFLER, T. Dare: High-performance
state machine replication on rdma networks. In Pro-
ceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing (New
York, NY, USA, 2015), HPDC ’15, ACM, pp. 107–118.

[49] PU, Q., VENKATARAMAN, S., AND STOICA, I. Shuf-
fling, fast and slow: Scalable analytics on serverless in-
frastructure. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19) (Boston,
MA, Feb. 2019), USENIX Association, pp. 193–206.

[50] RabbitMQ. https://www.rabbitmq.com/, 2019.

[51] RDMA CMA library. https://linux.die.net/man/
7/rdma_cm, 2019.

[52] RDMA Core Codebase. https://github.com/
linux-rdma/rdma-core, 2019.

[53] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-
MALEK, M., AND WILKES, J. Omega: Flexible,
scalable schedulers for large compute clusters. In
Proceedings of the 8th ACM European Conference
on Computer Systems (New York, NY, USA, 2013),
EuroSys ’13, ACM, pp. 351–364.

[54] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F.
Fast and concurrent rdf queries with rdma-based dis-
tributed graph exploration. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2016), OSDI’16,
USENIX Association, pp. 317–332.

[55] SINGHVI, A., HOUCK, K., BALASUBRAMANIAN, A.,
SHAIKH, M. D., VENKATARAMAN, S., AND AKELLA,
A. Archipelago: A scalable low-latency serverless plat-
form, 2019.

[56] Stanford Artificial Intelligence Index. https://hai.
stanford.edu/sites/g/files/sbiybj10986/f/
ai_index_2019_report.pdf, 2019.

[57] TALEB, Y., STUTSMAN, R., ANTONIU, G., AND
CORTES, T. Tailwind: Fast and atomic rdma-based
replication. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18) (Boston, MA, July 2018),
USENIX Association, pp. 851–863.

[58] TOSHNIWAL, A., TANEJA, S., SHUKLA, A., RA-
MASAMY, K., PATEL, J. M., KULKARNI, S., JACK-
SON, J., GADE, K., FU, M., DONHAM, J., BHAGAT,
N., MITTAL, S., AND RYABOY, D. Storm@twitter. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (New York, NY,
USA, 2014), SIGMOD ’14, ACM, pp. 147–156.

[59] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C.,
AGARWAL, S., KONAR, M., EVANS, R., GRAVES, T.,
LOWE, J., SHAH, H., SETH, S., SAHA, B., CURINO,
C., O’MALLEY, O., RADIA, S., REED, B., AND
BALDESCHWIELER, E. Apache hadoop yarn: Yet an-
other resource negotiator. In Proceedings of the 4th
Annual Symposium on Cloud Computing (New York,
NY, USA, 2013), SOCC ’13, ACM, pp. 5:1–5:16.

[60] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPEN-
HEIMER, D., TUNE, E., AND WILKES, J. Large-scale
cluster management at google with borg. In Proceedings
of the Tenth European Conference on Computer Sys-
tems (New York, NY, USA, 2015), EuroSys ’15, ACM,
pp. 18:1–18:17.

[61] WALDSPURGER, C. A. Memory resource management
in vmware esx server. SIGOPS Oper. Syst. Rev. 36, SI
(Dec. 2002), 181–194.

[62] WANG, C., JIANG, J., CHEN, X., YI, N., AND CUI, H.
Apus: Fast and scalable paxos on rdma. In Proceedings
of the 2017 Symposium on Cloud Computing (New York,
NY, USA, 2017), SoCC ’17, ACM, pp. 94–107.

[63] WANG, S., LOU, C., CHEN, R., AND CHEN, H. Fast
and concurrent rdf queries using rdma-assisted gpu
graph exploration. In Proceedings of the 2018
USENIX Conference on Usenix Annual Technical Con-
ference (Berkeley, CA, USA, 2018), USENIX ATC ’18,
USENIX Association, pp. 651–664.

[64] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Decon-
structing rdma-enabled distributed transactions: Hybrid
is better! In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18) (Carlsbad,
CA, Oct. 2018), USENIX Association, pp. 233–251.

11

https://www.rabbitmq.com/
https://linux.die.net/man/7/rdma_cm
https://linux.die.net/man/7/rdma_cm
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://hai.stanford.edu/sites/g/files/sbiybj10986/f/ai_index_2019_report.pdf
https://hai.stanford.edu/sites/g/files/sbiybj10986/f/ai_index_2019_report.pdf
https://hai.stanford.edu/sites/g/files/sbiybj10986/f/ai_index_2019_report.pdf


[65] WU, J., WYCKOFF, P., AND PANDA, D. K. PVFS over
infiniband: Design and performance evaluation. In 32nd
International Conference on Parallel Processing (ICPP
2003), 6-9 October 2003, Kaohsiung, Taiwan (2003),
pp. 125–132.

[66] XUE, J., MIAO, Y., CHEN, C., WU, M., ZHANG, L.,
AND ZHOU, L. Fast distributed deep learning over rdma.
In Proceedings of the Fourteenth EuroSys Conference
2019 (New York, NY, USA, 2019), EuroSys ’19, ACM,
pp. 44:1–44:14.

[67] YANG, J., IZRAELEVITZ, J., AND SWANSON, S. Orion:
A distributed file system for non-volatile main mem-

ory and rdma-capable networks. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19)
(Boston, MA, Feb. 2019), USENIX Association, pp. 221–
234.

[68] ZAMANIAN, E., BINNIG, C., HARRIS, T., AND
KRASKA, T. The end of a myth: Distributed transac-
tions can scale. Proc. VLDB Endow. 10, 6 (Feb. 2017),
685–696.

[69] ZAMANIAN, E., YU, X., STONEBRAKER, M., AND
KRASKA, T. Rethinking database high availability with
rdma networks. Proc. VLDB Endow. 12, 11 (July 2019),

1637–1650.

12


	Introduction
	Background and Motivation
	Background
	Publish-Subscribe
	Remote Direct Memory Access

	Requirements from emerging applications
	Apache Kafka Performance Analysis

	RDMA as a fundamental building block
	System Design
	Architecture
	APIs
	Producer library APIs
	Consumer library APIs

	Producer Flow
	Consumer Flow

	Implementation
	Server
	Producer Client
	Consumer Client

	Evaluation
	Experimental Setup
	Macrobenchmarks
	Microbenchmarks

	Related Work
	Future Work
	Conclusion
	Acknowledgements

