
SS-KVSTORE: Simple and Small Key-Value Store

Arjun Balasubramanian Mohammed Danish Shaikh

University of Wisconsin - Madison

Abstract
This study presents our experiences in designing and im-
plementing a simple and small key-value store named SS-
KVSTORE. We first outline the mechanism for building a
key-value store assuming that there are no failures and then
outline how failure handling can be incorporated into our
mechanisms. We find that we can implement a highly reli-
able and performant key-value store by using just a small
amount of auxiliary metadata associated with each key-value
pair. Evaluation on a prototype implementation shows that
SS-KVSTORE is able to achieve a read throughput of up to
~1400 keys/sec and a write throughput of up to ~45 keys/sec.

1 Introduction

Key-value stores are a popular class of services used for a
variety of purposes such as object caching, storing customer
preferences, handling session management, etc. A lot of re-
search has gone into how to make key-value stores more
performant [5, 8, 10, 12], resilient to failures [1, 6], and to
provide varying consistency guarantees [3, 4].

This paper presents our experience in building a simple
and small key-value store which we call SS-KVSTORE. SS-
KVSTORE stores key-value pairs persistently and is built to
tolerate failures and provide at least eventual consistency in
the presence of failures. Under the covers, SS-KVSTORE
consists of a bunch of shared-nothing servers that provide
replicated service. Additionally, SS-KVSTORE is also capa-
ble of handling multiple clients that can concurrently get or
put values to the key-value store.

We first present a basic design (Section 2.3) that works un-
der the assumption that none of servers fail. Then, we examine
the behavior of the system under the presence of failures and
introduce mechanisms to handle these failures (Section 2.4).

We evaluate our design (Section 4) by building a proto-
type implementation and running it against two common
workloads - uniform workload and a hot and cold work-
load. Our results show that SS-KVSTORE is able to achieve
a read throughput of up to ~1400 keys/sec and a write

throughput of up to ~45 keys/sec. We also perform a set
of micro-benchmarks that help point out certain improve-
ments that we can make in our prototype to further improve
performance. Our prototype implementation is available at
https://github.com/Arjunbala/KVStore.

2 Design

This section describes the internal design of SS-KVSTORE.
In Section 2.1, we introduce the assumptions that help sim-
plify the design of the system. We highlight the goals for
SS-KVSTORE in Section 2.2 which then leads onto the basic
design outlined in Section 2.3. The basic design section covers
details of the interface exposed to clients of SS-KVSTORE as
well as internal specifications of the protocol used to interact
between components assuming that there are no failures. In
Section 2.4, we extend the basic protocol to handle various
types of failures.

2.1 Assumptions
SS-KVSTORE provides a simple key-value storage service
where the keys and values are both strings. Our system im-
poses a bunch of restrictions for simplicity. It does not support
the storage of binary objects (BLOBs) like Dynamo [4]. Keys
can be printable valid ASCII characters that are at most 128
bytes in length and cannot include the characters "[" or "]".
Values have the same restrictions as keys except that they can
have a size of upto 2048 bytes.

At a bare minimum, we assume that SS-KVSTORE needs
to be runnable as a set of processes on a single machine. How-
ever, since we use the socket abstraction for communicating
between the server processes (Section 3), we expect our im-
plementation to work seamlessly when processes belonging
to the service reside outside the boundaries of a single ma-
chine. We implement SS-KVSTORE using a shared-nothing
model where each server maintains it’s own individual copies
of the data. Furthermore, SS-KVSTORE consists of a small
number of servers, hence the system replicates all data across

1

Client
Library

Client
Library

Application 1 Application 2

SERVER 1

COMMUNICATION VIA BACKPLANE (BOTH BROADCAST AND P2P)

SERVER 2 SERVER 3

Definite path of
communication

Potential path of
communication

SS-KVSTORE
SERVICE

Figure 1: High-level architecture illustrating the various components
in SS-KVSTORE

all servers to ensure high availability and fault tolerance.
In Section 2.4 where we deal with making our protocol

resilient to failures, we assume that processes can fail inde-
pendent to each other. We do not handle cases where the OS
crashes or the machine fails as a whole.

2.2 Goals
We design SS-KVSTORE with the following goals in mind:

• High availability and fault tolerance: We design SS-
KVSTORE with the goal to be highly available even in
the presence of failures. This translates into 3 sub-goals
- (i) Clients should be able to use the service as long
as at least one server is up. (ii) Clients should be able
to read values from or write values to any server that
is up at any given point of time. The service should be
responsible for sufficiently replicating writes to ensure
the availability of recent writes at other servers. (iii) In
anticipation of failures, the service should take care of
replicating write operations as quickly and reliably as
possible so as to have them available at other servers.

• Nearly strongly consistent in the absence of failures:
Clients should be able to observe strong consistency in
values as much as possible in the absence of failures.
The view of consistency should be stronger for a single
client that makes a sequence of reads/writes than two
concurrent clients issuing a sequence of reads/writes.

2.3 Basic design
Figure 1 outlines the high level structure of the SS-KVSTORE
service. Applications interact with the service through APIs
exposed by the client library (Section 2.3.1). The client library
internally communicates with one/more servers to serve client
read/write requests. In our setting, a server is an entity that
individually manages data in isolation. It may be simply a
process or a virtualized entity [7, 9, 11]. For the purposes of
our prototype, we assume that server entities are isolated as

different processes. Any two servers may or may not reside
on the same physical machine. The servers utilize a backplane
to communicate with each other for purposes of replication
and consensus (Section 2.3.2). In the sections to follow, we
show that using broadcasts and peer-to-peer communication
in different situations helps SS-KVSTORE provide a balance
of reliability and performance.

2.3.1 Client library APIs

In this section, we outline the APIs used by applications to
utilize the service and outline the internals of the client library.
int kv739_init(char ** server_list): An application uses
this API to initialize it with a subset of servers that it can com-
municate with, as specified by server_list. The API returns 0
if at least one of the servers specified in server_list is available
at the moment of initialization. If none of the servers specified
in server_list are available, then the API returns -1. Internally,
upon receiving the server list, the client library tries to connect
to each of them and check if at least one server is available.
The client library then designates one of the servers as a CON-
NECT SERVER. The purpose of the CONNECT SERVER is to
handle PUT requests as we will discuss below.
int kv739_shutdown(void): An application uses this API
to terminate and cleanup it’s connections with the servers
specified in server_list. Any application that wishes to
communicate with a different group of servers must call
kv739_shutdown() before calling kv739_init(server_list) for
the new set of servers. The API returns 0 if the cleanup was
successful, else it returns -1.
int kv739_get(char *key, char *value): This API is used to
retrieve the value for a given key. If the key is present, then the
API stores the value in the provided value string and returns
0. If the key is not present, the API returns 1 and if there
is a failure, the API returns -1. Internally, the client library
contacts the list of servers specified in server_list and returns
the value stored by majority of the servers. This choice is
further examined in Section 2.3.2.
int kv739_put(char *key, char *value, char *old_value):
This API is used to put a value for the given key. If the key
has a value already set, then the API sets this value through
the old_value string and returns 0. If there is no old value,
then the API returns 1 and old_value would simply be a null-
terminated string. The API returns -1 in case of failures. Inter-
nally, the API issues a PUT request to the CONNECT SERVER
that was designated during the kv739_init call. Details about
how this write is replicated across servers is discussed in
Section 2.3.2.

2.3.2 Basic protocol details

Algorithm 1 describes the basic protocol used for reading
and writing values in SS-KVSTORE. We first describe the

2

Pseudocode 1 SS-KVSTORE Basic Protocol
1: SERVER LIST . List of servers from kv_init API
2: CONNECT SERVER . Primary server designated by client library
3:
4: . Client library APIs start here
5: . Client library GET API
6: procedure KV739_GET(String Key, String Value)
7: VALUES = []
8: for all server ∈ SERVER LIST do
9: VALUES.append(server.get_value(key))

10: end for
11: return majority value in VALUES
12: end procedure
13:
14: . Client library PUT API
15: procedure KV739_PUT(String Key, String Value, String Old_Value)
16: Old_Value = CONNECT SERVER.put_value(key,value)
17: end procedure
18:
19: . Server internals starts here
20: SERVER DATASTORE . Datastore for storing key-value pairs for a server
21: SERVER LIST . List of servers belonging to service
22: SERVER ID . ID of this particular server
23: procedure GET_VALUE(String Key)
24: Return value stored for Key in SERVER DATASTORE
25: end procedure
26:
27: procedure PUT_VALUE(String Key, String Value)
28: PRIMARY_SERVER_FOR_KEY = hash(Key) % SERVER LIST.length()
29: if PRIMARY_SERVER_FOR_KEY == SERVER ID then
30: Old_Value = Update Value for Key in SERVER DATASTORE and mark

entry as dirty
31: seq = increment sequence number associated with Key
32: for all server ∈ SERVER LIST do
33: server.broadcast_write(Key,Value,seq)
34: end for
35: else
36: Old_Value = Update Value for Key in SERVER DATASTORE and mark

entry as dirty
37: PRIMARY_SERVER_FOR_KEY.put_value(Key,Value)
38: return Old_Value
39: end if
40: end procedure
41:
42: procedure BROADCAST_WRITE(String Key, String Value, Integer seq)
43: current_seq = Sequence Number for Key in SERVER DATASTORE
44: if seq >= current_seq then
45: Update Value for Key with sequence number of seq in SERVER DATAS-

TORE
46: else
47: No need to apply broadcasted write.
48: end if
49: end procedure

functionality offered by the server and then describe how the
client library interacts with the server.
Setup. Each server offers two APIs - a GET API and a PUT
API used to read and write values respectively to/from that
particular server. Each server consists of a SERVER DATAS-
TORE that persistently holds keys and values. For purposes of
versioning the values of keys, we associate a sequence number
with each key. The current value of the sequence number is
an indication of how many times the particular key has been
updated.

Each server is responsible for acting as a primary server
for a partition of key values. The primary server for a key is
responsible for ordering all writes associated with that par-
ticular key. Each key also has a dirty bit associated with it.
When updates are applied by a non-primary server, the dirty
bit is used to indicate that the key’s value has been updated
locally, but the primary server for that key has not ordered it

yet. We discuss the reason for a primary server to mark an
entry as dirty in Section 2.4.
Handling reads. For reads, the client library issues reads to
all servers specified by the application through the kv739_init
API. The client library returns the majority value among all
values returned to it (Line 6 in Algorithm 1). When a server
receives a GET request, a server simply reads the value for
the key from it’s SERVER DATASTORE and returns the value
(Line 23 in Algorithm 1). Hence, with respect to reads, the
guarantee offered is that the value returned is the value most
propagated among the servers.
Handling writes. For writes, the client library issues a PUT
request to one of the servers (called a CONNECT SERVER)
specified by the application through the kv739_init API. The
client library then simply returns the old value of the key
obtained from that server to the application along with the
appropriate return code (Line 15 in Algorithm 1). When a
server receives a PUT request, it computes a hash value for
the key associated with the request and identifies the primary
server for that key, which will be responsible for ordering
writes for that key. If the server is itself the primary server,
then it simply applies the update to its SERVER DATASTORE,
updates the sequence number associated with the key and
propagates the update to all other servers via a write broadcast.
The broadcast consists of the key, value, and the updated
sequence number. If the server that received the request is not
the primary server, then it persists the update in its datastore.
Here, it does not update the sequence number and simply
marks the update as dirty. It then forwards the PUT request to
the primary server (Line 27 in Algorithm 1).
Handling broadcast writes. A server receives a broadcast
write when any server has committed an update for which
the server was a primary server. On receiving a broadcasted
write, a server checks the current sequence number of the
key associated with the broadcasted update in it’s SERVER
DATASTORE. If the current sequence number is lower than
the sequence number of the broadcasted write, then the write
is applied to the datastore. Else, the broadcast is ignored. This
protocol helps with cases where the broadcast for the same
key might arrive out of order (Line 42 in Algorithm 1).

2.4 Protocol changes for server failure

In this section, we describe how our protocol can be aug-
mented to handle failures of servers. The key assumption in
our design is that each server knows the presence of other
servers in the system. Thus, when a server becomes unavail-
able, this information needs to be propagated and updated at
all servers in the system. Let us consider a case where a server
S goes down. First, we discuss how the system detects that S
is down and when(if) it comes back up. Next, we discuss how
to manage keys for which S served as a primary.

3

2.4.1 Detecting server failure

The failure of a server S can be detected by another server S’
in the cluster if S’ receives a PUT request for a key having
S as it’s primary server. When this happens, server S’ sends
a SERVER_DOWN broadcast to all servers in the system
indicating that server S is down. When server S comes back
up, S can send a SERVER_UP broadcast to inform all other
servers that it is up and running again.

For performance reasons, each server caches the current
state of all the other servers in the system. To do so, each
server stores a bitmap representing the status of other servers
in the cluster. The bitmap is arranged such that it contains
the status (UP/DOWN) for all servers ordered by their unique
server IDs. The bitmap is updated as follows:

• If a PUT request arrives at a server that is not primary, the
server needs to forward the request to the primary server
as mentioned in Section 2.3. However, if the primary
server is down, the forwarding will fail. The server that
received the request then sets the primary server’s bit in
it’s bitmap to indicate the DOWN status, and broadcasts
the same to other servers in the cluster so that they can
also update their bitmaps.

• When a server comes up, it sends a broadcast message
to all the servers in the cluster. On receipt of such a
message, each server updates it’s bitmap to indicate the
UP status of the server that sent the message.

2.4.2 Handling failure of primary server

We may have a scenario where a client sends a PUT request
to a server that is not primary. In such a case, the server that
received the request writes a dirty record locally (Section 2.3)
and forwards the PUT request to the primary server. However,
what happens if the primary server is down?

When the primary server for a key is down, we need to
designate another server as the primary server for that key. An
important consideration here is that all servers must agree on
the same new primary server. We use the bitmap mechanism
described above to help identify a new primary server for the
key.

Let us say that the status of primary server is stored at
position i in the bitmap, and there are N servers in the cluster.
Then, the server that received the PUT request simply for-
wards the request to the next alive server as specified in the
bitmap, i.e. (i+k)%N and servers at positions i, i+1,k−1
are all DOWN. Since all servers have the same view of the
bitmap, each server will therefore identify the server specified
in position (i+ k)%N as the new primary server for that key.

2.4.3 Handling non-propagated updates

In an eventually consistent system, there can be scenarios
where a server might crash before any recent update it got can

be replicated to other servers in the cluster. In this section,
we consider a bunch of those scenarios and outline how we
handle them.

Scenario 1. A primary server for a key can crash after it has
persisted the update for a key but before the update has been
replicated to other servers. We handle such a scenario using
the dirty field associated with each key. During a local update,
we mark the key as dirty and wait until we receive back the
write broadcast to unmark the key as dirty. When a server
comes back up, it re-issues the write broadcast for all keys
whose entries were marked as dirty. This design choice opens
up the possibility that a server might receive a stale write or a
duplicate write. Hence, we must have a mechanism in servers
to tolerate this at-least-once semantics. The sequence number
is tagged along with the write broadcast so that servers will
apply the update only if the sequence number is higher than
that in their SERVER DATASTORE.

Scenario 2. A non-primary server can crash between the
time it persisted an update and before it could forward the
request to the primary server. Once again, we can handle
such a scenario using the dirty field associated with each key.
When the server comes back up, it can re-forward all updates
marked as dirty to the corresponding primary servers. Once
again, the notion of sequence numbers helps primary servers
avoid making stale updates. However, in such a scenario the
primary server notifies the server which forwarded the request
that the dirty write is out of date and provides the server with
the updated value.

Scenario 3. Any server can crash between the time it re-
ceived a write broadcast from a primary server to when it
persisted the update in the SERVER DATASTORE. We handle
such scenarios by having clients poll all servers specified by
them in the kv_init API during reads so that the client can see
the value held by a majority of servers.

Scenario 4. We may have a case where a server crashes
while handling a client PUT request. In such a case, we expect
clients to retry the PUT operation. The semantics for such a
retry is described in Section 2.4.5.

2.4.4 Handling stale values

When a server S is down, other servers are acting as the
primary server for keys belonging to the key space for which
S was the primary server. Hence the server needs to read
most recent values of keys belonging to it’s key space after
it comes up. For doing so, whenever a server comes up, all
objects read from it’s SERVER DATASTORE are marked as
stale. Subsequently, if the server receives a request for an
object that is marked as stale, the server first reconciles the
state of the object by consulting with other servers in the
system and then serves the request.

4

2.4.5 Client failover

Client needs to handle server failure during PUT requests
since GET requests are served using a quorum (Section 2.3.2).
In case of a PUT request, if the client fails to establish con-
nection with the CONNECT SERVER(Section 2.3.2) or gets a
failure return code, it fails over to the next server in the list of
servers specified in the server list during kv739_init API call
(Section 2.3.1).

3 Implementation

This section discusses the implementation details of SS-
KVSTORE.

3.1 Communication mechanism

There are two approaches to marshal data to be sent across
the network or across processes - One is to use mechanisms
that couple the schema information with the data values (like
JSON) and the other is to use serialization approaches [2, 13]
that decouple schema specification from data values. In SS-
KVSTORE, requests and responses between the server and
client are encoded in JSON format, since the size of schema
specification adds only negligible overheads in comparison
to the size of data.

3.2 Client library

The client library is implemented in Cython, it provides the
client APIs specified in Pseudocode 1. This library can be
compiled into a shared library that the applications can use to
interface with SS-KVSTORE servers.

3.3 Server

The server is implemented as a multithreaded program in
Java, and persists it’s objects in SQLite database as described
further in Section 3.3.1. We then go on to describe the network
ports exposed by each server for external communication with
clients and internal communication among servers in Section
3.3.2. Post this, we describe the internal threading structure
of the server in Section 3.3.3. Next, we give a brief overview
of how the server manages communication between these
threads in Section 3.3.4. Finally, we describe an end-to-end
control flow for client GET and PUT requests in Section 3.4.

3.3.1 Data Store

We use SQLite, a SQL based database to persistently store
data in each server. The database consists of a table containing
the following fields (refer Table 1):

1. Key: This is a column of string type that stores the key.

2. Value: This is a column of string type that stores the
value corresponding to the key.

3. Sequence Number: This field essentially stores the ver-
sion number of the corresponding key which can later be
used to detect and resolve conflicts. The sequence num-
ber for a given key is assigned by the primary server,
and is applied at non-primary servers on receipt of a
broadcast message from the primary server.

4. Dirty: This is a boolean field indicating whether a valid
sequence number has been assigned to a given key after
a corresponding client write. For instance, if the client
sends a PUT request to a server that is not the primary
server for the key, the server writes the entry into it’s
database as dirty and forwards the PUT request to the
server which is the primary server for the key. The pri-
mary server then assigns a sequence number to the write,
writes it into it’s database and broadcasts the update
along with the assigned sequence number. On receipt
of the broadcast, all other servers update the sequence
number and invalidate the dirty bit, if set.

5. Stale: This is a boolean field set to indicate that the
record might not be recent. If this field is set, the server
reconciles the state of the record before serving the client
request.

Key Value Sequence
Number

Dirty Stale

Table 1: Database table schema

Client requests are then translated into the following SQL
commands:
Let’s say that the client wants to GET the value of a key K:

SELECT value from T where key=K

Let’s say that the client wants to PUT value V into key K,
let’s also assume that the current sequence number of the
record is seq:

BEGIN
OLD_VALUE = SELECT value from T where key=K

INSERT INTO T (key, value, sequence number, dirty, stale)
VALUES (K, V, seq+1, 0, 0)

COMMIT

Note that the SQL transaction semantics are used to make
client PUT requests atomic and isolated from concurrent trans-
actions.

3.3.2 Network port configurations

The servers in SS-KVSTORE consist of the following config-
uration options:

5

• External port (EP): This is the port where the server
receives and responds to client requests.

• Internal port (IP): This is the port which servers in
SS-KVSTORE use for peer-to-peer communication with
each other.

• Multicast IP and port: This is a cluster-wide configu-
ration. Each server in SS-KVSTORE subscribes to mes-
sages on multicast receiver port MRP on a multicast IP
address MIP.

• Multicast sender IP and port: Each server in the clus-
ter creates a DatagramSocket at multicast sender port
MSP to send packets to multicast IP address MIP.

3.3.3 Server threads

On startup, each server creates the following threads:

1. Client Request Handler (CRH): This thread creates a
pool of server sockets listening on EP. This is the thread
that responds to client GET and PUT requests.

2. Multicast Sender (MS): This thread creates a
DatagramSocket on multicast IP MIP and port MSP.

3. Multicast Receiver (MR): This thread listens to multi-
cast messages sent by servers on multicast IP MIP and
port MRP.

4. Internal Thread (IT): This thread creates a server
socket on port IP and listens to peer-to-peer commu-
nication requests from other servers in the cluster.

3.3.4 Queue

Each server has a thread-safe queue. Whenever a server needs
to broadcast a message to all other servers in the cluster, it
adds the message to this queue. Whenever a new message
is added into this queue for broadcast, the multicast sender
thread consumes and broadcasts this message. The following
messages can be added to this queue for broadcast:

• SERVER_UP: When a server comes up, it adds a
SERV ER_UP message to it’s queue.

• SERVER_DOWN: When a server finds out that an-
other server is down, it adds a SERV ER_DOWN mes-
sage to it’s queue.

• PUT: When a server writes a value corresponding to
a key for which it is the primary server, it assigns a
sequence number and adds the message along with the
sequence number to it’s queue.

3.4 Control flow for client requests
On receipt of a GET request, the server just responds with
the value stored locally, if it exists. Otherwise, the server

(a) PUT to primary server (b) PUT to non-primary server
Figure 2: Control flow for client PUT requests to a primary and
non-primary server

responds with a null.

Figure 2(a) shows step-by-step how client PUT requests
are handled if received by the primary server P:

1. CRH of P receives the PUT request.

2. CRH of P writes/updates the value locally, and incre-
ments the sequence number.

3. CRH of P returns the old value to the client.

4. CRH of P adds the request to the Queue along with it’s
assigned sequence number.

5. MS of P reads the message from the queue.

6. MS of P broadcasts the message read from the queue.

7. MR of all servers in the cluster receives the message.

8. MR of all servers in the cluster applies the received mes-
sage locally.

Figure 2(b) shows step-by-step how client put requests are
handled if received by a server that is not a primary server S:

1. CRH of S receives the PUT request.

2. CRH of S writes/updates the value locally, and marks
the record as dirty.

3. CRH of S returns the old value to the client.

4. CRH of S forwards the request to the primary server P
on it’s IT .

5. IT of P writes/updates the value locally and assigns/in-
crements the sequence number.

6. IT of P adds the message along with the sequence num-
ber to the Queue.

7. MS of P reads the message from the queue.

8. MS of P broadcasts the message read from the queue.

9. MR of all servers in the cluster receives the message.

10. MR of all servers in the cluster applies the received mes-
sage locally.

6

4 Evaluation

We evaluate our system with respect to two aspects:

• Correctness of the system: We perform a series of
correctness tests (Section 4.1) to evaluate the semantics
of SS-KVSTORE both in scenarios with and without
failures.

• Performance of the system: We primarily evaluate
the performance of SS-KVSTORE when there are no
failures (Section 4.2). We use a variety of workloads
which have different popularity distributions for keys.

4.1 Correctness tests
Below we describe a series of tests and describe the correct-
ness aspects of the system validated by each of the tests. Note
that each of the below tests are executed assuming a fresh
start for the key-value store, i.e, the key-value store is initially
empty.

4.1.1 Test 1 - Single client without failures

Details. This test involves a single client issuing a sequence
of write and read requests. We start up three server processes
as a part of the SS-KVSTORE service and assume that none
of the server processes fail. We then configure the client to
be able to communicate with any of the above 3 servers by
passing the server names of all three servers. As a first step,
the client writes 1000 randomly generated keys and values
to SS-KVSTORE. During this time, it checks that the write
was successful and asserts that the return value for kv739_put
is 0 since there is no old_value. After this, we set the client
to sleep for a configurable amount of time. This sleep time
will allow the PUT requests to replicate among servers. We
then read back the values for the same keys and check if the
written values can be read back successfully. Since we require
eventual consistency, we measure the minimum amount of
sleep time needed between the write phase and read phase in
order for all values to be read back successfully. We repeat
the same exercise for multiple iterations.
Results. We notice that SS-KVSTORE is able to provide
strong consistency for the atomic put and read operation,
which is evident from the fact that we did not require any
sleep between successive iterations of PUT requests. This is
because in the absence of failures, write requests from a client
always go to the same CONNECT SERVER. Additionally, we
also observe that no sleep time was required after an iteration
of writes in order to get strong consistency for the reads that
follow. We did not expect this as our read protocol returns the
majority value from all servers. Hence, we expected a small
sleep time to be required in order for results to propagate.
We believe that we did not notice this because the time for
replicating among servers mostly overlapped with the time to

complete the iteration of writes. We focus more on this aspect
through Test 2.

For our partner team, we also noticed that no sleep time
was required after an iteration of writes. However, we were
not able to stress test their system due to crashes. When the
test involved running 5 iterations of our workload, all reads
were successful. However, we noticed that 84% of the writes
returned failure in one of the iterations. When the test involved
running 10 iterations, we observed that the last iteration of
reads had 84% failures and all successive writes failed.

4.1.2 Test 2 - Concurrent clients without failures

Details. This test involves 2 concurrent clients that interact
with different partitions of servers. We start up three server
processes as a part of the SS-KVSTORE service and assume
that none of the server processes fail. On starting up, we issue
fork() to create a parent process and child process correspond-
ing to client 1 and client 2 respectively. The two processes
coordinate with each other using shared semaphores. We con-
figure client 1 to communicate only with server 1 and client
2 to communicate only with server 2 using the kv_init API.
Client 1 writes a value to SS-KVSTORE, wakes up Client 2 to
read the value for the same key, and then waits to be signalled
by Client 2. Client 2 can sleep for a configurable amount of
time before reading to allow for write operations to propagate
across servers. After reading the value, Client 2 signals Client
1 to write the value for the next key and then waits to be once
again signalled by Client 1. The outline of the test is shown
below:

sem_t *sem1 = sem_open("kvstore1", O_CREAT, S_IRUSR
| S_IWUSR, 0);

sem_t *sem2 = sem_open("kvstore2", O_CREAT, S_IRUSR
| S_IWUSR, 0);

int pid = fork();
if(pid == 0) {

// Init to interact with server 2
for(int i=0;i<KVSTORE_SIZE;i++) {

int value;
sem_wait(sem1);
usleep(SLEEP_TIME_US);
ret = kv739_get(keys[i], old_val);
// validate result
sem_post(sem2);

}
} else {

// Init to interact with server 1
for(int i=0;i<KVSTORE_SIZE;i++) {

ret = kv739_put(keys[i], values[i], old_val);
sem_post(sem1);
// validate result
sem_wait(sem2);

}
}

7

0 25 50 75 100 125
Time between write and read (ms)

0

25

50

75

100
%

 st
al

e
va

lu
es

Our scheme
Partner Team scheme

Figure 3: Comparison of time taken for updates to propagate across
servers.

This test checks that write operations are getting propa-
gated across servers and also measures the time required for
this propagation through the configurable SLEEP_TIME_US
parameter.
Results. Figure 3 show the variation in the percentage of
stale reads that we get as we vary SLEEP_TIME_US. We
notice that SS-KVSTORE is able to successfully propagate
values to all servers in ~125 ms.

For our partner team, we noticed that there is a significantly
lesser percentage of stale values when SLEEP_TIME_US
is set to zero. We tried to estimate the minimum value of
SLEEP_TIME_US for which no stale reads are observed. We
noticed that upto 25ms, the percentage of stale values re-
mained ~50%. Increasing the SLEEP_TIME_US beyond this
caused their system to crash.

4.1.3 Single client with server failures

Details. This test involves a single client issuing a sequence
of write and read requests but in the presence of failures. The
setting is essentially the same as that in Test 1 but with two
scenarios - (i) We kill one of the servers after writing 1000
values and before reading back the values. (ii) We kill two
servers after writing and before reading.
Results. For SS-KVSTORE, we observe that it is largely
able to tolerate both single and double server failures. The
client library is able to transparently handle getting majority
value from the servers that are up during a read operation. We
do however notice that sometimes a server may be killed by
the time it is able to propagate its updates to other servers.
In such a scenario, we notice stale value reads. We used two
mechanisms to verify the behavior of our system in such sce-
narios - (i) We introduce a small delay after completing all
writes, SLEEP_TIME_US before killing the server processes
and starting reads. When the value of SLEEP_TIME_US is
set to ~125 ms (following from 3), we notice that there are
no stale values since all writes are propagated to all servers
before the server(s) get killed. (ii) After observing stale val-
ues, we retry the read operations after restarting the killed

server(s). We observe that once we do this, we are able to
read back values without any staleness. We attribute this to to
our design choice of designating written entries as dirty and
re-transmitting dirty key entries upon a restart.

For our partner team, we had to make the following changes
to their scripts in order to simulate failures:

1. The server code had a logic where the server gets shut-
down when it has not received a connection for 5 sec-
onds. We think that this logic is incorrect and that a
server should be running continuously unless manually
killed. We modified their code to remove this logic, so
that we can have servers run continuously, and hence
enable us to simulate server failures.

2. The script that starts up servers was also responsible
for executing the test. For simulating failures, we had
to decouple the starting up of servers from execution of
tests.

Despite these efforts, we were unable to get our failure simu-
lation tests working, as kv_init always returned a -1. Hence,
we cannot present any evaluation results for failure handling.
We have shared the details of all tests with the partner team
to enable them to debug further.

4.2 Performance tests
In this section, we evaluate the performance of SS-KVSTORE.
For sake of uniformity, we assume that all keys are of size
128 bytes and all values are of size 512 bytes. We study
the performance of the system using two workloads in the
absence of failures.

• Uniform distribution. In this setup, we consider SS-
KVSTORE having 1000 keys. First, we perform 10,000
read operations and select a key at random to read. Next,
we perform 10,000 write operations and select a key at
random to write a new value for.

• Hot and Cold distribution. In this workload setup as
well, we consider 1000 keys. However, unlike uniform
distribution, 10% of the keys are designated as hot and
are accessed 90% of the time. The remaining 90% of
the keys are cold keys and are accessed only 10% of the
time.

Figure 4 and Figure 5 are macro-benchmarks that show the
performance of the system as the number of concurrent client
applications utilizing the system changes. In the setup, we
consider SS-KVSTORE having 3 servers.

From Figure 4(a), we notice that read throughput first in-
creases and then saturates as the number of concurrent ap-
plications increases. This trend is expected since the system
has a fixed capacity of requests that it can handle. We also
observe that SS-KVSTORE is able to give better through-
put with the uniform workload, which could be an artifact of

8

2 4 6 8
Number of concurrent clients

0

200

400

600

800

1000

1200

1400

1600

Re
ad

 T
hr

ou
gh

pu
t (

ke
ys

/s
ec

)

Uniform distribution
Hot and Cold distribution

(a) Throughput

2 4 6 8
Number of concurrent clients

0

1

2

3

4

5

6

7

8

Av
g.

 R
ea

d
La

te
nc

y
(m

s)

Uniform distribution
Hot and Cold distribution

(b) Latency

Figure 4: Comparison of read throughputs and latencies for Uniform
and Hot and Cold workloads as the number of concurrent clients
change

2 4 6 8
Number of concurrent clients

0

10

20

30

40

50

W
rit

e
Th

ro
ug

hp
ut

 (k
ey

s/
se

c)

Uniform distribution
Hot and Cold distribution

(a) Throughput

2 4 6 8
Number of concurrent clients

0

25

50

75

100

125

150

175

200

Av
g.

 W
rit

e
La

te
nc

y
(m

s) Uniform distribution
Hot and Cold distribution

(b) Latency

Figure 5: Comparison of write throughputs and latencies for Uni-
form and Hot and Cold workloads as the number of concurrent
clients change

contention for reading on the same row in the SQL database.
One potential problem in our implementation is that even
though we allow for multiple threads to receive input requests
(multiple CRHs), we utilize only a single thread for database
operations. To solve this problem, we could potentially have
each CRH have it’s own database thread for better scalabil-
ity. In such a scenario, the SQL database would essentially
handle concurrency control and isolation between concurrent
transactions from mutliple CRHs. Similarly, from Figure 4
(b), we notice increasing latencies for both workloads as the
number of concurrent client applications increase. Once again,
this can be attributed to same reason and issue as described
above. Similar trends are observed with respect to the write
throughput and latencies as observed in Figure 5.

Next, we consider a micro-benchmark where we evaluate
the performance of SS-KVSTORE when the number of key-
value pairs stored by the service changes. In this test, we
consider that only a single client uses the service and that there
are 3 servers in total. We do not show latency trends, since
when there is a single client, latency numbers can be easily
derived as the inverse of throughput. We expect both read and
write throughputs to more or less remain the same irrespective
of the size of SS-KVSTORE. From our measurements (Figure
6), we observe that this largely remains the case except for

0 2000 4000 6000 8000 10000
KV-Store size

500

550

600

650

700

750

800

Av
g.

 R
ea

d
Th

ro
ug

hp
ut

 (k
ey

s/
se

c)

(a) Read Throughput

0 2000 4000 6000 8000 10000
KV-Store size

0

5

10

15

20

25

30

Av
g.

 W
rit

e
Th

ro
ug

hp
ut

 (k
ey

s/
se

c)

(b) Write Throughput

Figure 6: Comparison of read and write throughputs as the size of
SS-KVSTORE changes

2 4 6 8
Number of servers

0

500

1000

1500

2000

2500

Av
g.

 R
ea

d
Th

ro
ug

hp
ut

 (k
ey

s/
se

c)

(a) Read Throughput

2 4 6 8
Number of servers

0

5

10

15

20

25

30

35

Av
g.

 W
rit

e
Th

ro
ug

hp
ut

 (k
ey

s/
se

c)

(b) Write Throughput

Figure 7: Comparison of read and write throughputs as the number
of servers in SS-KVSTORE changes

some variations which we believe are due to disturbances on
our test environment. Please note that we did run multiple
iterations of the test and the values presented are the average
values across all runs.

Finally, we consider another micro-benchmark where we
evaluate the performance of SS-KVSTORE while we vary
the number of servers. In this test, we use a single client
and assume that there are 1000 key-value pairs. We expected
read throughput to remain nearly the same since our protocol
issued reads to all servers in parallel. However, from our mea-
surements (Figure 7(a)), we noticed a huge degradation in
read performance as the number of servers increased. Upon
further investigation, we found that even though we were us-
ing threads, the execution of the threads got falsely serialized
due to Python’s Global Interpreter Lock. A possible fix to
this problem would be to use Python’s asyncio feature, but
we did not have the time to try out this fix. We expected
write throughput to slightly degrade as the number of servers
increased due to the need to perform more replication. Our
measurements as shown in Figure 7(b) reflect that this trend
indeed holds.

5 Conclusion

We have successfully designed, implemented, and evaluated a
key-value store. The design of SS-KVSTORE shows that one

9

can design a highly reliable and performant key-value store by
storing only minimal auxiliary information such as sequence
numbers, dirty flags, and staleness information. Our evalua-
tion shows that we are able to give the stipulated consistency
guarantees and that our system is sufficiently performant.

6 Acknowledgements

We would like to thank Prof. Michael Swift for the interesting
mini-project and our partner team members Nick Daly and
Sek Cheong for providing us with their implementation to
present results on our correctness tests. We would also like to
thank our batchmates for raising important observations on
Piazza.

References

[1] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M.,
PHANISHAYEE, A., TAN, L., AND VASUDEVAN, V.
Fawn: A fast array of wimpy nodes. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles (New York, NY, USA, 2009), SOSP
’09, ACM, pp. 1–14.

[2] Apache Avro. http://avro.apache.org/docs/1.9.
1/, 2018.

[3] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C.,
WALLACH, D. A., BURROWS, M., CHANDRA, T.,
FIKES, A., AND GRUBER, R. E. Bigtable: A distributed
storage system for structured data. In 7th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI) (2006), pp. 205–218.

[4] DECANDIA, G., HASTORUN, D., JAMPANI, M.,
KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND
VOGELS, W. Dynamo: Amazon’s highly available
key-value store. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems
Principles (New York, NY, USA, 2007), SOSP ’07,
ACM, pp. 205–220.

[5] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M.,
AND HODSON, O. Farm: Fast remote memory. In
11th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 14) (Seattle, WA, 2014),
USENIX Association, pp. 401–414.

[6] ESCRIVA, R., WONG, B., AND SIRER, E. G. Hyperdex:
A distributed, searchable key-value store. In Proceed-
ings of the ACM SIGCOMM 2012 Conference on Appli-
cations, Technologies, Architectures, and Protocols for
Computer Communication (New York, NY, USA, 2012),
SIGCOMM ’12, ACM, pp. 25–36.

[7] AWS Firecracker. https://github.com/
firecracker-microvm/firecracker, 2018.

[8] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G.
Fasst: Fast, scalable and simple distributed transac-
tions with two-sided (RDMA) datagram rpcs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (Savannah, GA, Nov. 2016),
USENIX Association, pp. 185–201.

[9] Kubernetes. https://kubernetes.io/, 2019.

[10] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUT-
NAM, A., CHEN, E., AND ZHANG, L. Kv-direct:
High-performance in-memory key-value store with pro-
grammable nic. In Proceedings of the 26th Symposium
on Operating Systems Principles (New York, NY, USA,
2017), SOSP ’17, ACM, pp. 137–152.

[11] MERKEL, D. Docker: Lightweight linux containers for
consistent development and deployment. Linux J. 2014,
239 (Mar. 2014).

[12] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided
RDMA reads to build a fast, cpu-efficient key-value
store. In Presented as part of the 2013 USENIX Annual
Technical Conference (USENIX ATC 13) (San Jose, CA,
2013), USENIX, pp. 103–114.

[13] VARDA, K. Protocol buffers: Google’s data interchange
format. Tech. rep., Google, 6 2008.

10

http://avro.apache.org/docs/1.9.1/
http://avro.apache.org/docs/1.9.1/
https://github.com/firecracker-microvm/firecracker
https://github.com/firecracker-microvm/firecracker
https://kubernetes.io/

	Introduction
	Design
	Assumptions
	Goals
	Basic design
	Client library APIs
	Basic protocol details

	Protocol changes for server failure
	Detecting server failure
	Handling failure of primary server
	Handling non-propagated updates
	Handling stale values
	Client failover

	Implementation
	Communication mechanism
	Client library
	Server
	Data Store
	Network port configurations
	Server threads
	Queue

	Control flow for client requests

	Evaluation
	Correctness tests
	Test 1 - Single client without failures
	Test 2 - Concurrent clients without failures
	Single client with server failures

	Performance tests

	Conclusion
	Acknowledgements

