
CLAP: The Unwritten Contract for Distributed File Systems on SSDs

Anshu Verma Arjun Balasubramanian

University of Wisconsin - Madison

Abstract
The distributed systems of today are designed using the guid-
ance of the CAP theorem. Distributed systems need to be
able to tolerate network partition and hence the CAP theorem
boils down to a trade-off between consistency and availabil-
ity. In this work, we show that the CAP Theorem is no longer
self-sufficient to serve as the holy grail for distributed system
design in wake of modern storage media such as SSDs. Due to
their unique wearing characteristics, it is essential to be able to
reason about SSD cluster lifetime while designing distributed
systems. In this work, we propose a new CLAP Theorem
to encapsulate lifetime within the CAP theorem. Through
carefully crafted simulation experiments over a variety of
modern workloads, we showcase how different strategies for
consistency can have huge effects on the lifetime of the SSD
cluster.

1 Introduction

The world is today moving away from Hard Disk Drives
(HDDs) having mechanical moving parts and instead em-
bracing NAND-based flash memory. This is evident from the
rising popularity of Solid State Drives (SSDs). SSDs have
already been widely deployed both in datacenter and personal
computer settings due to their ability to provide high through-
put and low latency. On similar lines, Non Volatile Memory
(NVM) is expected to substitute or complement DRAM in the
memory hierarchy. This has prompted several studies [17,24]
on the performance characteristics of these devices. How-
ever, one of the issues with flash memory is with its reliabil-
ity. Flash memory wears out with writes and has high error
rates [3]. Techniques like wear-leveling and data scrubbing
are used to overcome these problems. These techniques how-
ever exhaust the limited P/E cycles of flash memory pages
which leads to reduced lifetimes for these devices.

In a tangential world, the growing need for processing large
amounts of data has led to the development of many big data
analytic frameworks [1,11,14,31,32,35,37,45,46]. These ap-
plications rely on distributed storage systems [12,36,43,48] to

store their data. Additionally, distributed configuration stores
like ZooKeeper [20] require storage media for holding config-
uration and states in a fault-tolerant manner. The distributed
storage systems in turn interact with storage media such as
HDDs and SSDs to actually store data.

Different distributed systems adopt different policies to
store data or state. A myriad of options exist because different
applications require different semantics for data consistency.
Consequently, different systems provide options to trade-off
on varying level of consistency with performance [8, 27, 42];
strong consistency guarantees would require synchronous
replication of data leading to degraded performance. The
foundation for this trade-off is embedded in the popular CAP
theorem [13]. The CAP theorem has driven the design of
many popular systems and is used as a guiding principle to
develop distributed systems.

Traditional failure models for distributed systems charac-
terize failure with the underlying assumption that disks can
fail independently [38]. However, when distributed systems
are deployed on top of flash-based media like SSDs, this as-
sumption no longer holds true. Since SSDs gradually wear
out with writes, the relative rate at which SSDs wear out in a
distributed setting depends on the distribution of the workload
across the SSDs; an SSD that takes on a larger proportion of
the workload is likely to fail quicker than others in the cluster.
Such a scenario makes the cluster doomed for faster failure.
This is undesirable because SSDs would have to replaced
at a faster rate leading to greater cost of maintenance. Con-
sequently, in a distributed scenario, wear-leveling within an
SSD is no longer sufficient; there is also a need to balance out
the wearing among the SSDs in the cluster.

Hence, there is a need to deconstruct the impact of dif-
ferent replication policies with varying levels of consistency
on the lifetime of the underlying SSD cluster. In this work,
as a preliminary effort, we examine the impact of different
distributed storage policies on the lifetime of the underly-
ing cluster consisting of SSDs. We focus on two classes of
distributed systems - one which adopts a stronger form of
consistency like Google File System (GFS) [12] and one

1



Figure 1: Difference in handling of writes in HDDs and SSDs

which adopts weaker forms of consistency like Ceph [48].
Through simulations of these schemes, we show that stronger
consistency policies promote better cluster lifetimes. More
importantly, it means that highly performance systems that
employ weak consistency guarantees limit the lifetime of the
SSD cluster on top of which they are deployed.

As a consequence, the CAP theorem is no longer sufficient
to encapsulate the trade-offs of distributed system design in
the wake of emerging storage media. To serve as a guiding
light for system designers, we believe that the CAP theorem
must be modified to include the trade-offs incurred in lifetime
with varying levels of consistency. As a novel contribution,
we propose a new CLAP theorem, a soft addition of Lifetime
to the CAP theorem for emerging storage media. In the con-
text of this work, we do not attempt to prove the validity of
the newly proposed CLAP theorem. We wish to propose the
new CLAP theorem as a design panacea and leave proofs to
future work. Hence, we introduce the CLAP theorem as an
unwritten contract that distributed file systems must adhere to
for emerging storage media like SSDs.

The rest of this paper is arranged as follows. Section 2
presents a background on SSDs, Distributed Systems, and
CAP Theorem. Section 3 outlines the impact of different con-
sistency models on the lifetime of an SSD cluster. Finally, Sec-
tion 4 presents empirical results which leads to some lessons
on distributed storage system design for better lifetimes.

2 Background

2.1 Solid State Devices

SSD Fundamentals
Flash chips aboard SSDs are commonly composed of

blocks, which are typically in the order of hundreds of KBs or
larger. A block consists of pages, which usually range from 2
KB to 16 KB in size. Three kinds of operations are supported
by flash chips: read, erase, and program(or writes). Reads and
writes are permitted at the granularity of a page, whereas an
erasure is permitted only at the block level.

How are overwrites handled in an SSD?
Figure 1 shows a toy example of the difference between

how writes are handled in HDDs and SSDs. In our setting,
let us assume that each block has 4 pages. Initially, one
block consists of data A(A1,A2,A3,A4). Now, consider a
scenario where data A needs to be overwritten with data
B(B1,B2,B3,B4). In HDDs, the updates can be performed
in-place. However in SSDs, the contents would need to be
written out to a new block and the old contents need to be
marked as invalid. Invalid blocks are then reclaimed by a
process known as garbage collection.

Role of Flash Translation Layer
The complexity of SSD internals is hidden by a software

layer on the SSD called the Flash Translation Layer (FTL).
The FTL exposes a simple block interface to the upper layers.
Because updates cannot be made in place, the FTL needs to
hold a mapping between the logical block location from the
client’s perspective to the actual location of the block on the
SSD.

In addition to this, the SSD also hosts a Flash Memory
Controller which performs the below functions -

• Garbage Collection. The Flash Memory Controller
runs a background garbage collection whenever the num-
ber of free blocks drops below a built-in threshold. It
reclaims blocks by copying the valid pages in blocks
into programmable blocks and then performing an erase
on the block. This reclamation procedure ensures that
blocks are ready to be programmed and can take up new
writes.

• Wear leveling. Flash memory pages can endure a lim-
ited number of erase operations. The lifetime of the SSD
would be shorten if certain pages wear out quickly in
comparison to others. Hence, the Flash Memory Con-
troller attempts to balance out the wear among pages in
a process called wear-leveling.

Sources of Error in Flash Memory
As outlined in [23], there are 3 major sources of error in

flash memory -

• Wear. Repeated erases wear out flash memory cells that
store electrons and causes irreversible damage to them
[4]. Each flash memory block has an endurance limit
and this limit is not fixed across all blocks of the SSD
due to variations in manufacturing.

• Retention Loss. Electrons stored in flash memory cells
can leak over time, causing errors when data is read. The
error rate increases as cells wear [4, 34]. Interestingly,
these errors are transient; i.e. they get reset once the
block is erased.

2



Figure 2: Progression of error rates in flash memory over the years.
Data taken from [23]

Figure 3: Differences between SLC, MLC, and TLC

• Disturbance. A read on a wordline in a block can
weakly affect other wordlines in the block [4, 34] re-
sulting in the disturbance of electrons in the flash cell.
The amount of disturbance increases as cells wear out.
Like retention loss, this kind of error is transient in nature
as well.

Why is Flash Memory Error increasing over the years?
Figure 2 shows the progression of error rates associated

with flash memory over the years. It is pretty counter-intuitive
that errors are actually increasing over the years. The reason
for increasing errors is in that hardware manufacturers are try-
ing to reduce the size of flash cells by packing more bits into
a single cell. As visible in Figure 3, a Single-Level Cell(SLC)
flash consists of a single bit per cell, whereas MLCs and TLCs
have two and three bits per cell respectively. Greater packing
leads to more storage capacity per unit area but increases the
chances of retention loss and disturbance errors.

Handling flash memory errors

SSD manufacturers provide additional storage capacity
within each page to store Error Correction Codes (ECCs).
Whenever a page is read, it is checked against the ECC for
that page to check if the data was read correctly. If the data
was not read correctly and if error correcting mechanisms fail,
then the FTL attempts to retry reading the page.

To avoid data loss, the FTL performs an activity called data
scrubbing to relocate pages that could be prone to read errors.
Post this relocation, the pages become eligible for garbage
collection. Once collected and erased, the page will no longer
be prone to read errors since retention and disturbance errors
are transient. In effect, the background data scrubbing reduces
the chance for read errors but negatively impacts performance
and accelerates wear.

2.2 Distributed File Systems
Different distributed file systems adopt different replication
strategies that utilize varying levels of consistency.

Google File System (GFS) [12] is built on master-slave
architecture with a single master holding the meta-data in-
formation in the memory. The metadata server stores access
information, lock information, mapping of files to chunk id,
chunk locations, and primary server for write propagation.
When a client requests a read with filename and byte location,
it first contacts the GFS master and obtains the chunk ID and
a list of chunk locations. Similar to HDFS, the client then
chooses the closest replica to do the read from. When a client
issues a write request, it first contacts the GFS master to get
the primary server and list of replicas. The client initiates
the write to the primary and the primary determines the opti-
mized topology to push down the writes to all replicas using
chain replication [47]. In a certain sense, GFS allows for a
stronger form of consistency by allowing reads from any of
the replicas.

Ceph [48] improves scalability by assigning the responsi-
bility of object allocation to CRUSH. Files are striped into
objects and CRUSH uses a pseudo-random algorithm to de-
termine the storage server. This approach helps to reduce the
load from the meta-data server as well as ensuring the storage
is distributed uniformly across all the storage devices. When
a Ceph client opens a file, the request goes to Metadata server
and it returns the inode number, file size, access information
and striping strategy used to map objects into storage devices.
It’s imperative to note that the Ceph serves reads from primary
and all the writes to the primary and replicas are written in a
synchronous manner. In a certain sense, Ceph has a weaker
form of consistency by allowing reads only on the primary
replica.

2.3 CAP Theorem
The CAP Theorem states that in a distributed system, one can
only have two out of the following three guarantees across a

3



write/read pair: Consistency, Availability, and Partition Toler-
ance; one of them must be sacrificed.

3 CLAP: The Unwritten Contract

Lifetime of Cluster
We incorporate a strict definition for the lifetime of a cluster.

We define lifetime as the amount of time it takes for a single
page in the cluster of SSDs to reach its endurance limit. Now,
we outline the reason for this choice of definition for lifetime.

Let us say that the we have N SSDs in the cluster
SSD1,SSD2, ..SSDN . For sake of simplicity, let us say that
each SSDi for i = 1,2...N has a uniform number of pages - M.
We refer to page m on SSDi as Pagei,m.

For each SSDi, we can take the page Pagei,m for m =
1,2..M that has endured maximum wear as representative
of that SSD. This is because the SSD will lose its re-
liability and degrade very fast when at least one page
in it has reached its endurance limit. Let us say that
the pages with maximum erase operations in the SSDs
are MaxErase1,MaxErase2...,MaxEraseN corresponding to
SSD1,SSD2, ..SSDN respectively.

The distribution of MaxErase1,MaxErase2...,MaxEraseN
can help determine the lifetime of the cluster. If a particular
MaxErasei dominates, then that SSD becomes a hotspot for
failure and consequently for the failure of the entire cluster.
Hence, we prefer distributions where the MaxErasei is nearly
the same among all SSDs.

The impact on lifetime depends upon - (i) The relative
placement of replicas of different chunks. (ii) The policy for
handling read requests, i.e., which copy of the replica to read
from. (iii) The distribution of write requests amongst chunks.

We now look at the impact of strong and weak consistency
protocols on the lifetime of SSDs leading up to the CLAP
Theorem.

Strong Consistency Protocols
With strong consistency protocols, all of the replicas of data

chunks are persisted durably during a write operation. Read
requests can be routed to any copy of the replica. Hence, in
general, strong consistency protocols ensure that read requests
can be distributed uniformly among replicas leading to the
SSDs holding them to endure uniform wear.

Weak Consistency Protocols
With weak consistency protocols, only a few replicas of

chunks(sometimes even just a single replica) are persisted.
Read requests are usually routed to only the primary replica.
Hence, in general, weak consistency protocols ensure that
read requests are skewed towards the primary replica, leading
them to endure non-uniform wear.

Figure 4: Design of Distributed SSD Simulator

Following from the above, we can conclude that the use of
strong consistency protocols promotes longer lifetimes. This
forms the core basis of the CLAP Theorem.

4 Empirical Results

4.1 Methodology

We used a simulator to model a bunch of workloads atop two
different distributed file systems - GFS [12] and Ceph [48]. In
our implementation, GFS represents a distributed file system
that supports a stronger form of consistency while Ceph rep-
resents a distributed file system that supports a weaker form
of consistency.

Figure 4 specifies the high-level design of the simulator. At
the highest layer, the user can specify the workload to be run.
The workload interacts with the distributed file system APIs
(Algorithm 1). The distributed file system can be configured
to use either GFS or Ceph. Additional settings like the num-
ber of replicas and chunk size are also configurable. For the
purpose of this prototype, we assume that all read and write
requests will have a size that is a multiple of the chunk size.
Additionally, we also assume that the chunk size is a multiple
of the block size.

The distributed file system in turn interacts with
the dataservers which are also configuration-based. The
dataservers manage the allocation of data across SSD blocks
and handle SSD internals such as Garbage Collection, Wear-
Leveling, and Data Scrubbing. We parameterize the SSD as
a set of configurations so that we can model SSDs from dif-
ferent manufacturers. Below is a list of configuration options
available for each data server -

• PAGE SIZE. Defines size of SSD page in bytes.

• PAGES PER BLOCK. Defines the number of pages per
block in the SSD.

• TOTAL NUMBER OF PAGES. Defines total number of
pages available in the SSD. The storage capacity of the

4



Pseudocode 1 APIs supported by the simulator
1: . FILENAMETOFD = Mapping from file name to FD
2: . FDTOCHUNKID = Mapping from FD to list of chunk IDs
3: . CHUNKIDTOSERVERS = Mapping from chunk ID to list of data servers
4: . FDTOFILEATTRIBUTES = Mappping from FD to list of File Attributes
5: . CLIENTIDFILETOOFFSET = Per client mapping from FD to offset
6:
7: procedure CREATE(Filename F , ClientID C)
8: . Insert F into FILENAMETOFD
9: . Create a new file attribute for F and insert into FDTOFILEATTRIBUTES

10: . Insert offset of 0 for file F and client C into CLIENTIDFILETOOFFSET
11: . return FD
12: end procedure
13:
14: procedure OPEN(Filename F , ClientID C)
15: . Get FD for F from FILENAMETOFD
16: . Insert offset of 0 for file F and client C into CLIENTIDFILETOOFFSET
17: . return FD
18: end procedure
19:
20: procedure READ(FileDescriptor FD, Buffer B, ReadCount RC, ClientID C)
21: . Get offset for client C and file descriptor FD from CLIENTIDFILETOOFF-

SET
22: . STARTINGCHUNKNO = o f f set /ChunkSize
23: . CHUNKSTOREAD = RC/ChunkSize
24: for all chunk ∈ list of chunks to read do
25: . Get list of dataservers from CHUNKIDTOSERVERS
26: . Decision of which dataserver to read from is implementation specific
27: end for
28: . Update offset for FD and C in CLIENTIDFILETOOFFSET
29: . Return the contents read
30: end procedure
31: procedure WRITE(FileDescriptor FD, Buffer B, WriteCount WC, ClientID C)
32: . Get offset for client C and file descriptor FD from CLIENTIDFILETOOFF-

SET
33: . STARTINGCHUNKNO = o f f set /ChunkSize
34: . CHUNKSTOWRITE = WC/ChunkSize
35: for all chunk ∈ list of chunks to write do
36: if chunk to be overwritten then
37: . DATASERVERS = get dataservers for chunk from CHUNKID-

TOSERVERS
38: . Issue writes to servers to update all replicas.
39: else if a new chunk needs to be created
40: . DATASERVERS = Identify dataservers to which new chunk should

be written to. This is implementation specific
41: . Insert DATASERVERS for chunk into CHUNKIDTOSERVERS
42: end if
43: . Update last modified attribute for FD in FDTOFILEATTRIBUTES
44: . Update offset for FD and C in CLIENTIDFILETOOFFSET
45: end for
46: . return amount of data written
47: end procedure
48:
49: procedure SEEK(FileDescriptor FD, Offset O, ClientID C)
50: . Update offset for FD and C in CLIENTIDFILETOOFFSET to O
51: end procedure
52:
53: procedure DELETE(FileDescriptor FD)
54: . Remove mappings from all datastructures.
55: . Delete corresponding chunks from dataservers.
56: end procedure
57:

SSD can be computed as the product of PAGE SIZE and
TOTAL NUMBER OF PAGES.

• MAX ERASE COUNT. Defines the maximum number
of erase operations that every page within that SSD can
endure. In reality, this number would vary from block to
block due to manufacturing variations. However, for the
purpose of this prototype, we assume that all pages have
similar endurance.

• GC THRESHOLD. When the fraction of free pages

within the SSD drops below the GC THRESHOLD, the
SSD triggers garbage collection. Since we do not model
performance, we check if GC needs to be triggered each
time there is a change in block allocation. This works
well enough to model lifetime for the sake of this proto-
type.

• MAX READ RETRIES. Define the max retries that the
FTL will perform under read failures. If the number of
retries reaches MAX READ RETRIES, then the read will
result in a failure.

• DATA SCRUBBING THRESHOLD. When the fraction
of number of retries used for serving a particular read
request against MAX READ RETRIES exceeds the DATA
SCRUBBING THRESHOLD, then the block read will be
marked for migration.

We simulate wear-leveling by choosing the block that has
incurred the least amount of writes while choosing new blocks
to write to.

In an effort to promote research in the correlation be-
tween distributed file systems and SSD cluster lifetime, we
have made our simulator available at https://github.com/
Arjunbala/DistributedSystemsSSDs.

4.2 Experimental Setup
4.2.1 Cluster Configuration

In our base configuration, we set the number of replicas as 3
and the chunk size as 4MB. For data servers, we use a page
size of 128KB, 4 pages per block, with a total disk capacity
of 100MB. We set the GC threshold as 0.8, the data scrubbing
threshold as 0.1, and the max read retries as 20. The max
erase count is set to 1000. We intentionally scale down the
disk capacity and the max erase count so as to get faster results.
The trends we observe will hold true even when scaled up
since the trend extrapolates.

4.2.2 Workload

We choose three workloads that result in different I/O patterns
as below

• Downpour Stochastic Gradient Descent. Downpour
Stochastic Gradient Descent (Downpour SGD) is a pop-
ular distributed machine learning training algorithm pro-
posed in DistBelief [6]. Though the world of distributed
ML training has evolved since DistBelief, the core idea
of using Downpour SGD still pervades. Downpour SGD
employs data parallelism - the training data is split into
multiple disjoint parts among multiple workers. Each
worker samples random training points from its split
of data and performs gradient descent over them. The
updates to parameters are then sent over the network to

5

https://github.com/Arjunbala/DistributedSystemsSSDs
https://github.com/Arjunbala/DistributedSystemsSSDs


a single master. The number of points that each worker
samples is determined by a quantity known as mini-batch
size. In terms of the I/O workload, Downpour SGD is
a read-heavy workload that generates random I/O since
each worker randomly picks training data points from
its split of training data. In our setting, we assume that
the entire training data is stored by the distributed file
system and that individual workers fetch data by reading
from the distributed file system.

• Ephemeral Data Workload. Traditional compute-
centric frameworks [7, 50] process batches of data in
multiple stages often represented by a DAG abstraction.
Each stage read input data, performs some compute, and
writes some intermediate data to the disk. Post this, the
next stage reads data from disk, once again performs
some computation, and once again writes out interme-
diate data to the disk. Pocket [26] is a system that pro-
vides cheap, scalable storage for this intermediate data,
which is also termed as ephemeral data. It is termed
as ephemeral data because the data is no longer needed
once downstream stages have consumed them. We model
an ephemeral data workload by modeling it as a vari-
ant of iterative MapReduce [7] - First, the mapper reads
data from disk, then writes out intermediate data to disk,
which is then read by a variable number of reducers.
The reducers once again write out data to disk which
is then read by the mappers in the next iteration. The
ephemeral data written out by mappers and reducers
can be deleted when they have been consumed by their
downstream stage. Thus, emphemeral data presents a
workload which involves a high number of writes, reads,
and deletions.

• Hot and Cold Workload. [40] presents an observation
that users operate for a large fraction of their time on a
small subset of files. We refer to the frequently accessed
data as hot data and the less frequently accessed data as
cold data. We define skewness as the percentage of total
data that is hot data. For instance, a skewness of 10%
implies that 10% of the data is accessed frequently while
90% of the data is accessed infrequently. We perform a
mixture of reads and writes on both hot and cold data in
our workload.

4.3 Metrics
We use two metrics to evaluate the lifetime of a distributed
file system -

• Iteration Count. We run each of the workloads in iter-
ations until it hits a point of failure. We define failure to
have occured in one of the following scenarios occurs -
(i) A read fails as the read retry for a page exceeds MAX
READ RETRIES. (ii) The number of erase operations

(a) Iteration Count (b) Entropy

Figure 5: Downpour SGD - Trend by modifying client count (number of
workers)

for a particular page on the SSD exceeds MAX ERASE
COUNT for any SSD. In our failure model, we have a
strict notion for failure as the event when a single page
in any SSD crosses its endurance limit. In all of our ex-
periments, we measure the number of iterations endured
by the SSD cluster till failure occurs. A higher iteration
count indicates better lifetime characteristics.

• Entropy. Another metric of interest is the distribution
of wear across the cluster when failure happens. For this
purpose, we use Jain’s Fairness Index to compute the
entropy of wears across the cluster. For each SSD, we
find the page that has endured the maximum number
of erase operations as E1,E2..En. We then compute the
Jain’s Fairness Index over the set of E1,E2, ..En. A value
closer to 1 indicates a fair spread of wear across the
cluster while lower values indicate an uneven spread of
wear across the SSD cluster.

4.4 Lessons
4.4.1 Downpour SGD Workload

For this workload, we use training data of size 100MB loaded
onto the distributed file system. Each training data sample has
a size of 512KB. We vary the batch size and worker count in
our experiments.

• Lesson 1: Distribute reads across replicas for better
lifetime. Figure 5 presents the variation in lifetime and
entropy in wear as the number of workers(clients) vary
in the Downpour SGD workload. We observe that GFS
outlasts Ceph irrespective of the client count. This can be
attributed to the fact that GFS has a stronger consistency
model. In GFS, a read can be done from any replica
which in turn ensures a uniform distribution of reads
across replicas. As a result, the wear caused by data
scrubbing gets uniformly distributed across the cluster.
In contrast, Ceph redirects all read requests to the pri-
mary replica. This results in a few SSDs incurring wear
due to data scrubbing, while leaving out the others. As
a result, we observe shorter lifetimes and worse entropy
values.

6



(a) Iteration Count (b) Entropy

Figure 6: Downpour SGD - Trend by modifying the number of SSDs in the
cluster.

(a) Iteration Count (b) Entropy

Figure 7: Downpour SGD - Trend by enabling/disabling caching

• Lesson 2: Distributing reads leads to better lifetimes
as cluster scales. Figure 6 presents the variation in
lifetime and entropy in wear as we vary the size of the
cluster for the Downpour SGD workload. We observe
that Ceph progressively gets worse in comparison to
GFS as we increase the cluster size. This can be once
again attributed to the weaker form of consistency in
Ceph. In Ceph, even though the cluster size increases,
the reads would continued to be directed only towards
those SSDs that hold the replicas. Consequently, those
SSDs would suffer greater wear in comparison to the
rest, resulting in decreased lifetimes.

• Lesson 3: Caching does not solve all problems in
read heavy workloads. Figure 7 captures the effect of
caching on the lifetime and entropy of wear across a
cluster of SSDs. In this experiment, we use a cache size
that is 10% the size of the training data. We notice that
caching does improve the lifetime of the cluster for both
GFS and Ceph. The benefits would be better with larger
cache sizes since the cache would be able to absorb a
larger number of read requests. In spite of the absorbing
a proportion of reads, we notice that Ceph still performs
an order of magnitude worse than GFS. This outlines
the fact that stronger consistency guarantees lead to bet-
ter lifetimes even in the presence of significantly large
caches.

• Lesson 4: Workload characteristics such as batch size
do not matter much. Figure 8 shows the variance in
lifetime and wear entropy as we vary the mini-batch
size for the Downpour SGD workload. We notice that

Figure 8: Downpour SGD - Trend of iteration count on varying
mini-batch size

(a) Iteration Count (b) Entropy

Figure 9: Downpour SGD - Trend by varying the number of replicas in the
cluster

the number of iterations decreases as the mini-batch
size increases. This is expected as larger mini-batches
issue more reads in a single iteration. It is interesting to
note that the lifetimes of both GFS and Ceph decrease
by the same order of magnitude as the mini-batch size
increases. This indicates that consistency policies do not
affect wearing properties when workload characteristics
such as mini-batch size are modified.

• Lesson 5: Distributing reads ensures fairness of wear
with a higher number of replicas. Figure 9 shows the
variation in lifetime and entropy of wear as we vary the
number of replicas employed by the distributed file sys-
tem (GFS and Ceph). We notice that Ceph increases per-
forms worse as we increase the number of replicas. For
distributed storage systems like GFS that adopt stronger
consistency policies, a larger number of replicas pro-
motes a wider spread of reads, whereas the reads would
continue to go to the same primary replica in Ceph.
Hence, Ceph does not benefit in comparison to GFS
with an increasing number of replicas.

4.4.2 Ephemeral Data Workload

In this workload, we assume that each mapper writes out 2KB
of data and that each reducer again writes out 2KB of data.
We vary the number of reducers in our experiments.

• Lesson 6: Workload characteristics do not matter for

7



Figure 10: Ephemeral data - Trend of entropy on varying the number
of reducers

(a) Iteration Count (b) Entropy

Figure 11: Ephemeral Data - Trend as distributed file system characteristics
(Number of replicas) and SSD characteristics (GC Threshold) vary

ephemeral data. Figure 10 captures the trend as we vary
the number of reducers for ephemeral data workloads.
We observe these workload characteristics do not impact
lifetime for ephemeral data workloads. This is because
deletes dominate the cause of wear and the amount of
data deletion is same for both Ceph and GFS.

• Lesson 7: File System and SSD characteristics do not
affect ephemeral workloads. Figure 11 shows the ef-
fects on lifetime as we vary distributed system charac-
teristics like the number of replicas and SSD charac-
teristics like the GC THRESHOLD. In deletion heavy
workloads like ephemeral data, the iteration count would
not vary much with the number of replicas because all
replicas would need to be destroyed irrespective of the
consistency protocol. Similarly, when a lot of data is
written and deleted, GC will invariably always kick in
irrespective of the threshold, leading to similar wearing
characteristics with varying GC THRESHOLDS.

4.4.3 Hot and Cold Workload

For this workload, we assume that each file has a size of
2MB. The proportion of hot and cold files is adjusted by the
skewness factor.

• Lesson 8: Distributing the workload provides better
lifetimes with a higher amount of data Figure 12
shows the variation of iteration count as we vary the

Figure 12: Hot and Cold Workload - Trend of iteration count as
number of files changes

Figure 13: Hot and Cold Workload - Trend of iteration count as
cache size increases

file count. We observe that GFS gradually improves over
Ceph as the number of files increase. This once again
boils down to the fact that GFS distributes read among
the replicas courtesy of its stronger consistency protocol.
The effect as expected gets more magnified as the num-
ber of files (and consequently the amount of data stored)
increases.

• Lesson 9: Increasing cache size does not proportion-
ally increase lifetime Figure 13 shows the impact of
varying cache sizes on the iteration count and SSD clus-
ter lifetime. We observe that inspite of additional caches
does decrease the order of magnitude by which GFS
outperforms Ceph. However, the increase is not linear
in nature. Thus, increasing cache size does not linearly
decrease the difference in lifetimes between stronger and
weaker consistency protocols.

• Lesson 10: Skewed workloads affect the system life-
time Figure 14 shows the impact on lifetime as we vary
the skewness. We observe that the factor by which GFS
outperforms Ceph increases as we the percentage of
hot data increases. This can be attributed that as more
data gets touched(reads/writes), the effects of splitting
the workload among the different replicas in protocols
having stronger consistency semantics helps.

8



Figure 14: Hot and Cold Workload - Trend of iteration count as the
skewness of hot data is varied

5 Related Work

5.1 SSD Performance and Reliability

Several researchers have looked at the properties of SSDs
and performed studies to understand workloads and design
choices suitable for single SSDs. However, no prior work has
looked at the performance and lifetime of a cluster of SSDs.

He et. al [17] performed a detailed analysis of applications
atop modern file systems and FTLs and formalized an un-
written contract that clients of SSDs must follow to achieve
high performance. They present five rules that are critical
for SSDs - (i) Request Scale : SSD clients must issue large
requests or many requests to fully utilize the parallel band-
width offered by SSDs. (ii) Locality : To avoid SSD cache
translation misses, clients must issue requests to the SSD with
locality (iii) Aligned Sequentiality : To reduce the cost of
converting page-level mappings to block-level mappings in
hybrid-mapping FTLs, clients must write with sequentiality
within a block. (iv) Group by Death Time : Clients must group
writes by death time to reduce cost of garbage collection [33]
(v) Uniform Data Lifetime : Clients must create data with
similar lifetimes to reduce overheads of wear leveling [3].

Kim et. al [23] looked at the design trade-off for reliabil-
ity within an SSD. They outline three major sources of flash
memory errors as - (i) Wear: Repeated P/E cycles gradually
wear out flash memory cells [4, 15]. (ii) Retention Loss: Elec-
trons in flash memory leak over time and the errors caused
by retention increases with the amount of wear. It is also im-
portant to note that retention errors disappear once the block
has been erased [34]. (iii) Disturbance : Studies have shown
reading a wordline in a block weakly affects other wordlines
in a block and gradually causes errors with re-reads [4,15,34].
Like with retention, this error too disappears once the block
has been erased. They further discuss the trade-offs that arise
in terms of reliability and performance due to operations like
error correction, intra-SSD redundancy [25], and data scrub-
bing [16, 29].

5.2 Distributed Storage Reliability

Several studies have been carried out to characterize the re-
liability of disks and disk failures [9, 18, 21, 30, 38, 39, 41]
and have come up with schemes like redundancy and erasure
codes [2, 5, 19, 28] to prevent data loss due to disk failures.
However, no work has comprehensively looked at or modeled
wear across a cluster of SSDs.

Other work has looked at how to use measures of reliability
to configure redundancy settings. The most recent work in
this area is by Kadekodi et. al [22], who analyze large-scale
storage systems having a heterogenous mix of storage devices
with significantly different failures rates. They make the ob-
servation that redundancy settings are statically configured
and explore opportunities to reduce the amount of redundancy
during periods where disks have high reliability. Using the
information that annualized failure rates follow a bathtub
curve [10, 49], they design a system HeART that identifies
periods of infancy, useful lifetime, and wearout in order to
configure redundancy settings in an online fashion.

5.3 Tiering File Systems

A popular solution to effective utilize and maximize the bene-
fits and lifetime of SSDs has been to use them in combination
with other persistent media.

Griffin [44] is a hybrid storage device with HDD as a write
cache for a SSD based storage systems. The main motivations
behind this approach are : (i) HDDs can match the sequential
write bandwidth of SSD. (ii) General purpose workloads con-
tain a fraction of batch overwrite. By ensuring those writes
on HDD in a log structured format, one can reduce the write
amplification on SSD.

Ziggurat [51] looks at how NVMM can complement SSDs
to create storage systems with near-NVMM performance and
large capacity. The paper presents a synchronicity predictor
to decide which storage tier to redirect write requests to. The
paper also looks at the distinction between hot data and cold
data and intelligently places only cold data in SSDs in order
to reduce write amplification.

6 Conclusion

In this work, we have explored the impact of different con-
sistency protocol strategies on the lifetime of an SSD cluster.
Through experiments and logical arguments, we have shown
that stronger consistency protocols can promote longevity in
SSD clusters. This forms the basis for the newly proposed
CLAP theorem that can cleanly encapsulate the design trade-
offs for distributed system design on top of modern storage
media.

9



References

[1] ARMBRUST, M., XIN, R. S., LIAN, C., HUAI, Y.,
LIU, D., BRADLEY, J. K., MENG, X., KAFTAN, T.,
FRANKLIN, M. J., GHODSI, A., AND ZAHARIA, M.
Spark sql: Relational data processing in spark. In Pro-
ceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data (New York, NY, USA,
2015), SIGMOD ’15, ACM, pp. 1383–1394.

[2] BLÖMER, J., KALFANE, M., KARP, R., KARPINSKI,
M., LUBY, M., AND ZUCKERMAN, D. An xor-based
erasure-resilient coding scheme, 1995.

[3] BOBOILA, S., AND DESNOYERS, P. Write endurance
in flash drives: Measurements and analysis. In Proceed-
ings of the 8th USENIX Conference on File and Stor-
age Technologies (Berkeley, CA, USA, 2010), FAST’10,
USENIX Association, pp. 9–9.

[4] CAI, Y., GHOSE, S., HARATSCH, E. F., LUO, Y., AND
MUTLU, O. Error characterization, mitigation, and re-
covery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE 105, 9 (Sep. 2017), 1666–1704.

[5] CORBETT, P., ENGLISH, B., GOEL, A., GRCANAC, T.,
KLEIMAN, S., LEONG, J., AND SANKAR, S. Row-
diagonal parity for double disk failure correction. In
Proceedings of the 3rd USENIX Conference on File
and Storage Technologies (Berkeley, CA, USA, 2004),
FAST’04, USENIX Association, pp. 1–1.

[6] DEAN, J., CORRADO, G. S., MONGA, R., CHEN, K.,
DEVIN, M., LE, Q. V., MAO, M. Z., RANZATO, M.,
SENIOR, A., TUCKER, P., YANG, K., AND NG, A. Y.
Large scale distributed deep networks. In NIPS (2012).

[7] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified
data processing on large clusters. In OSDI’04: Sixth
Symposium on Operating System Design and Implemen-
tation (San Francisco, CA, 2004), pp. 137–150.

[8] DECANDIA, G., HASTORUN, D., JAMPANI, M.,
KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND
VOGELS, W. Dynamo: Amazon’s highly available
key-value store. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems
Principles (New York, NY, USA, 2007), SOSP ’07,
ACM, pp. 205–220.

[9] ELERATH, J. Hard-disk drives: The good, the bad, and
the ugly. Commun. ACM 52, 6 (June 2009), 38–45.

[10] ELERATH, J. G. Afr: problems of definition, calcu-
lation and measurement in a commercial environment.
In Annual Reliability and Maintainability Symposium.

2000 Proceedings. International Symposium on Product
Quality and Integrity (Cat. No.00CH37055) (Jan 2000),
pp. 71–76.

[11] ESPEHOLT, L., SOYER, H., MUNOS, R., SIMONYAN,
K., MNIH, V., WARD, T., DORON, Y., FIROIU,
V., HARLEY, T., DUNNING, I., LEGG, S., AND
KAVUKCUOGLU, K. IMPALA: Scalable distributed
deep-RL with importance weighted actor-learner ar-
chitectures. In Proceedings of the 35th International
Conference on Machine Learning (Stockholmsmäs-
san, Stockholm Sweden, 10–15 Jul 2018), J. Dy and
A. Krause, Eds., vol. 80 of Proceedings of Machine
Learning Research, PMLR, pp. 1407–1416.

[12] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The
google file system. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2003), SOSP ’03, ACM, pp. 29–43.

[13] GILBERT, S., AND LYNCH, N. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. SIGACT News 33, 2 (June 2002), 51–59.

[14] GONZALEZ, J. E., XIN, R. S., DAVE, A.,
CRANKSHAW, D., FRANKLIN, M. J., AND STO-
ICA, I. Graphx: Graph processing in a distributed
dataflow framework. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2014), OSDI’14,
USENIX Association, pp. 599–613.

[15] GRUPP, L. M., CAULFIELD, A. M., COBURN, J.,
SWANSON, S., YAAKOBI, E., SIEGEL, P. H., AND
WOLF, J. K. Characterizing flash memory: Anomalies,
observations, and applications. In 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO) (Dec 2009), pp. 24–33.

[16] HA, K., JEONG, J., AND KIM, J. An integrated ap-
proach for managing read disturbs in high-density nand
flash memory. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 35, 7 (July
2016), 1079–1091.

[17] HE, J., KANNAN, S., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. The unwritten contract of
solid state drives. In Proceedings of the Twelfth Euro-
pean Conference on Computer Systems (New York, NY,
USA, 2017), EuroSys ’17, ACM, pp. 127–144.

[18] HEIEN, E., LAPINE, D., KONDO, D., KRAMER, B.,
GAINARU, A., AND CAPPELLO, F. Modeling and toler-
ating heterogeneous failures in large parallel systems. In
SC ’11: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage
and Analysis (Nov 2011), pp. 1–11.

10



[19] HUANG, C., AND XU, L. Star : An efficient coding
scheme for correcting triple storage node failures. IEEE
Transactions on Computers 57, 7 (July 2008), 889–901.

[20] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED,
B. Zookeeper: Wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX Confer-
ence on USENIX Annual Technical Conference (Berke-
ley, CA, USA, 2010), USENIXATC’10, USENIX Asso-
ciation, pp. 11–11.

[21] JIANG, W., HU, C., ZHOU, Y., AND KANEVSKY, A.
Are disks the dominant contributor for storage failures?:
A comprehensive study of storage subsystem failure
characteristics. Trans. Storage 4, 3 (Nov. 2008), 7:1–
7:25.

[22] KADEKODI, S., RASHMI, K. V., AND GANGER, G. R.
Cluster storage systems gotta have heart: improving stor-
age efficiency by exploiting disk-reliability heterogene-
ity. In 17th USENIX Conference on File and Storage
Technologies (FAST 19) (Boston, MA, 2019), USENIX
Association, pp. 345–358.

[23] KIM, B. S., CHOI, J., AND MIN, S. L. Design tradeoffs
for SSD reliability. In 17th USENIX Conference on
File and Storage Technologies (FAST 19) (Boston, MA,
2019), USENIX Association, pp. 281–294.

[24] KIM, H.-J., LEE, Y.-S., AND KIM, J.-S. Nvmedirect:
A user-space i/o framework for application-specific op-
timization on nvme ssds. In 8th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 16)
(Denver, CO, 2016), USENIX Association.

[25] KIM, J., LEE, E., CHOI, J., LEE, D., AND NOH, S. H.
Chip-level raid with flexible stripe size and parity place-
ment for enhanced ssd reliability. IEEE Transactions on
Computers 65, 4 (April 2016), 1116–1130.

[26] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A.,
PFEFFERLE, J., AND KOZYRAKIS, C. Pocket: Elas-
tic ephemeral storage for serverless analytics. In 13th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18) (Carlsbad, CA, 2018),
USENIX Association, pp. 427–444.

[27] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Wisckey: Separating keys
from values in ssd-conscious storage. In 14th USENIX
Conference on File and Storage Technologies (FAST 16)
(Santa Clara, CA, 2016), USENIX Association, pp. 133–
148.

[28] LUO, J., SHRESTHA, M., XU, L., AND PLANK, J. S.
Efficient encoding schedules for xor-based erasure
codes. IEEE Transactions on Computers 63, 9 (Sep.
2014), 2259–2272.

[29] LUO, Y., CAI, Y., GHOSE, S., CHOI, J., AND MUTLU,
O. Warm: Improving nand flash memory lifetime with
write-hotness aware retention management. In 2015 31st
Symposium on Mass Storage Systems and Technologies
(MSST) (May 2015), pp. 1–14.

[30] MA, A., DOUGLIS, F., LU, G., SAWYER, D., CHAN-
DRA, S., AND HSU, W. Raidshield: Characterizing,
monitoring, and proactively protecting against disk fail-
ures. In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15) (Santa Clara, CA, 2015),
USENIX Association, pp. 241–256.

[31] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHN-
ERT, J. C., HORN, I., LEISER, N., AND CZAJKOWSKI,
G. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 international conference
on Management of data (New York, NY, USA, 2010),
pp. 135–146.

[32] MENG, X., BRADLEY, J., YAVUZ, B., SPARKS,
E., VENKATARAMAN, S., LIU, D., FREEMAN, J.,
TSAI, D., AMDE, M., OWEN, S., XIN, D., XIN,
R., FRANKLIN, M. J., ZADEH, R., ZAHARIA, M.,
AND TALWALKAR, A. Mllib: Machine learning in
apache spark. J. Mach. Learn. Res. 17, 1 (Jan. 2016),
1235–1241.

[33] MEZA, J., WU, Q., KUMAR, S., AND MUTLU, O. A
large-scale study of flash memory failures in the field.
In Proceedings of the 2015 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of
Computer Systems (New York, NY, USA, 2015), SIG-
METRICS ’15, ACM, pp. 177–190.

[34] MIELKE, N. R., FRICKEY, R. E., KALASTIRSKY, I.,
QUAN, M., USTINOV, D., AND VASUDEVAN, V. J. Re-
liability of solid-state drives based on nand flash mem-
ory. Proceedings of the IEEE 105, 9 (Sep. 2017), 1725–
1750.

[35] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD,
M., BARHAM, P., AND ABADI, M. Naiad: A timely
dataflow system. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 439–455.

[36] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN,
O., HOWELL, J., AND SUZUE, Y. Flat datacenter stor-
age. In Presented as part of the 10th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 12) (Hollywood, CA, 2012), USENIX, pp. 1–15.

[37] NOGHABI, S. A., PARAMASIVAM, K., PAN, Y.,
RAMESH, N., BRINGHURST, J., GUPTA, I., AND
CAMPBELL, R. H. Samza: Stateful scalable stream
processing at linkedin. Proc. VLDB Endow. 10, 12 (Aug.
2017), 1634–1645.

11



[38] PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. A
case for redundant arrays of inexpensive disks (raid). In
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data (New York, NY,
USA, 1988), SIGMOD ’88, ACM, pp. 109–116.

[39] PINHEIRO, E., WEBER, W.-D., AND BARROSO, L. A.
Failure trends in a large disk drive population. In Pro-
ceedings of the 5th USENIX Conference on File and
Storage Technologies (Berkeley, CA, USA, 2007), FAST
’07, USENIX Association, pp. 2–2.

[40] ROSELLI, D. S., LORCH, J. R., ANDERSON, T. E.,
ET AL. A comparison of file system workloads. In
USENIX annual technical conference, general track
(2000), pp. 41–54.

[41] SCHROEDER, B., AND GIBSON, G. A. Disk failures
in the real world: What does an mttf of 1,000,000 hours
mean to you? In Proceedings of the 5th USENIX Confer-
ence on File and Storage Technologies (Berkeley, CA,
USA, 2007), FAST ’07, USENIX Association.

[42] SHUE, D., FREEDMAN, M. J., AND SHAIKH, A. Per-
formance isolation and fairness for multi-tenant cloud
storage. In Presented as part of the 10th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 12) (Hollywood, CA, 2012), USENIX, pp. 349–
362.

[43] SHVACHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The hadoop distributed file system. In
Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST) (Washington,
DC, USA, 2010), MSST ’10, IEEE Computer Society,
pp. 1–10.

[44] SOUNDARARAJAN, G., PRABHAKARAN, V., BALAKR-
ISHNAN, M., AND WOBBER, T. Extending ssd lifetimes
with disk-based write caches. In Proceedings of the 8th
USENIX Conference on File and Storage Technologies
(Berkeley, CA, USA, 2010), FAST’10, USENIX Asso-
ciation, pp. 8–8.

[45] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z.,
CHAKKA, P., ANTHONY, S., LIU, H., WYCKOFF, P.,

AND MURTHY, R. Hive: A warehousing solution over a
map-reduce framework. Proc. VLDB Endow. 2, 2 (Aug.
2009), 1626–1629.

[46] TOSHNIWAL, A., TANEJA, S., SHUKLA, A., RA-
MASAMY, K., PATEL, J. M., KULKARNI, S., JACK-
SON, J., GADE, K., FU, M., DONHAM, J., BHAGAT,
N., MITTAL, S., AND RYABOY, D. Storm@twitter. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (New York, NY,
USA, 2014), SIGMOD ’14, ACM, pp. 147–156.

[47] VAN RENESSE, R., AND SCHNEIDER, F. B. Chain
replication for supporting high throughput and availabil-
ity. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Vol-
ume 6 (Berkeley, CA, USA, 2004), OSDI’04, USENIX
Association, pp. 7–7.

[48] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG,
D. D. E., AND MALTZAHN, C. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th Symposium on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2006), OSDI ’06,
USENIX Association, pp. 307–320.

[49] YANG, J., AND FENG-BIN SUN. A comprehensive
review of hard-disk drive reliability. In Annual Reliabil-
ity and Maintainability. Symposium. 1999 Proceedings
(Cat. No.99CH36283) (Jan 1999), pp. 403–409.

[50] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A.,
MA, J., MCCAULY, M., FRANKLIN, M. J., SHENKER,
S., AND STOICA, I. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster comput-
ing. In Presented as part of the 9th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 12) (San Jose, CA, 2012), USENIX, pp. 15–28.

[51] ZHENG, S., HOSEINZADEH, M., AND SWANSON, S.
Ziggurat: A tiered file system for non-volatile main
memories and disks. In 17th USENIX Conference on
File and Storage Technologies (FAST 19) (Boston, MA,

2019), USENIX Association, pp. 207–219.

12


	Introduction
	Background
	Solid State Devices
	Distributed File Systems
	CAP Theorem

	CLAP: The Unwritten Contract
	Empirical Results
	Methodology
	Experimental Setup
	Cluster Configuration
	Workload

	Metrics
	Lessons
	Downpour SGD Workload
	Ephemeral Data Workload
	Hot and Cold Workload


	Related Work
	SSD Performance and Reliability
	Distributed Storage Reliability
	Tiering File Systems

	Conclusion

