
Deconstructing the Shuffle operation in 
Big Data Workloads 

 
1. Introduction 1 

2. Motivation 2 

3. Analysis of Shuffle in Spark 4 

4. Implementation 5 
Socket based TCP/IP 5 
RDMA 7 

5. Evaluation 8 
Cost on time 8 
Cost on CPU Utilization 10 
Cost on deserialization 11 

6. Conclusion 12 
 

1. Introduction 
Many important applications in diverse domains require analyzing huge datasets. These           
datasets may be a relational table, a stream of events, or graph-structured data. To enable this                
analysis, several frameworks (e.g. Spark, MapReduce, Flink, GraphX) have been developed. In            
most of these frameworks, a user writes a program that has an analysis logic for a partition of                  
the data. The framework takes in this program, partitions the data to be analyzed across               
multiple servers, and executes the program in parallel on these partitions. A key detail is that                
analysis programs may consist of multiple such computations that can be parallelized. The             
dependency between these computations can be captured using a DAG model, where a node              
represents a computation task and an edge represents a dependency between computations.            
Thus, in the DAG model, a computation can be triggered or started once all of the upstream                 
computations have been done. 
 
Big data frameworks may schedule computation tasks for different nodes of the DAG on              
different servers. To proceed with its computation, a node must have results of computations              
from upstream nodes available with it. This requires moving intermediate data from multiple             
servers to the nodes where data is required, an operation which is termed as the ​shuffling of                 



data. Since shuffling involves moving potentially large amounts of data across the network,             
shuffling results in several overheads as listed below - 

● Shuffling costs can dominate the overall running time of an analysis program. 
● Shuffling burns a significant amount of CPU cycles. To shuffle, a host CPU must              

determine the target location of intermediate data for downstream tasks. Post this, the             
host CPU must interact with the networking stack to initiate the intermediate data             
transfer. On the receiver end, the CPU gets involved in receiving and buffering the              
intermediate data. Additionally, the CPU is involved in deserializing the data so as to              
make it available for consumption to the downstream task. 

 
We view shuffle as a service that a network should offer rather than one that is tied to                  
applications. In this project, we wish to explore techniques to reduce shuffling costs and reduce               
the CPU utilization of the shuffling operation and provide the abstraction of a             
Shuffling-as-a-service operation. We explore what pieces of the shuffle operation can benefit            
from hardware acceleration. To this end, we do the following - 

● First, we analyze the overheads incurred by shuffling. We analyze some common            
applications on Apache Spark and measure the overheads of shuffling. We use the             
TPC-DS benchmark on Spark SQL, PageRank computation on GraphX, windowed word           
count analysis of a large incoming stream of data on Spark Streaming. Our analysis              
shows that shuffle costs are significant and improvements in shuffle performance can            
help reduce the end-to-end running time of big data computations. 

● We then study the internal architecture of the shuffle on Apache Spark and implement              
standalone prototypes that emulate the shuffle operation using TCP/IP and RDMA as            
transport substrates. 

● We run micro-benchmarks using these prototypes and obtain some key insights that can             
guide the design of new shuffle-as-a-service network operation. We offer insights as to             
what components of the shuffle can benefit from hardware offload. 

2. Motivation 
To measure the impact of shuffle on big data workloads, we benchmark some common              
applications atop Spark as described below - 
 

● TPC-DS using Spark SQL - TPC-DS is a popular benchmark used for measuring the              
performance of systems that serve OLAP or decision support workloads. We set up             
TPC-DS with a scale factor of 1, which means that the database has approximately 1GB               
of data. We then evaluate the shuffle performance on queries 12, 21, 50, 71, 85. These                
represent different classes of queries with different access patterns. 

● Word count using Spark Streaming - We benchmarked the shuffle cost for streaming             
workloads by using a simple word count program that prints the word count every 2               
seconds. We replay a large text file from HDFS as the workload and feed it to Spark                 
Streaming using Netcat. We run the streaming workload for 5 minutes.  



● PageRank using GraphX - We benchmarked the shuffle cost on PageRank atop            
GraphX using the Berkeley-Stanford dataset. The graph has 685230 nodes and           
7600595 edges. We ran PageRank for 40 iterations. 

 
Spark UI exposes a bunch of metrics that give insights into the shuffle performance. We use                
these metrics to perform our analysis. Spark gives us the below metrics with respect to shuffling                
- 
(i) ​Read blocked time (ms) - This is the amount of time a downstream node in the computation                  
graph is waiting for data to be read and shuffled from upstream nodes. 
(ii) ​Remote Reads (MB)​ - This is the amount of data read from remote nodes during a shuffle. 
 
We run the 3 workloads mentioned above which represent batch processing, stream            
processing, and graph processing. We dump metrics into a folder, persist it using Spark              
provided options, and analyze the metrics using the Spark history server. The results are              
presented below - 
 
 

Workload Time spent in 
shuffle (ms) 

Remote data 
shuffled (MB) 

Total running 
time (ms) 

% time spent in 
the shuffle 

TPC-DS Query 12 124 ms 111 MB 1243 ms 9.97% 

TPC-DS Query 21 133 ms 198 MB 1781 ms 7.47% 

TPC-DS Query 50 141 ms 177 MB 3914 ms 3.6% 

TPC-DS Query 71 100 ms 91 MB 488 ms 20.49% 

TPC-DS Query 85 112 ms 112 MB 1886 ms 5.94% 

Word count  20ms 1.2MB 69ms 29% 

PageRank 116 ms 195 MB 40 secs 0.7% 

 
We observe that nodes in the computation stalls waiting for data to be shuffled. The percentage 
of time is particularly high in the case of streaming workloads, where low latency is of 
paramount importance. Thus, reducing shuffle costs is an interesting problem that needs to be 
solved. In order to do this, we analyze the current architecture of shuffle in Apache Spark. 

  



3. Analysis of Shuffle in Spark 
 

 
Figure 1:​ Anatomy of a shuffle operation in Apache Spark 

 
Figure 1 shows the internal operation of a shuffle in Apache Spark. We obtained this analysis                
both by going through the Spark code as well as through multiple blog posts. 
 
The key data structure used in the shuffle is the results queue, which buffers serialized data                
which is fetched by multiple threads over the network. A single thread consumes items from the                
results queue, deserializes the data, and computes some function over it. Generically, this             
function may be thought of as constructing a hashmap of key-value pairs that needs to be                
handed over to the reducer logic. 
 
The shuffle operation begins with Shuffle Block Fetch Iterator issuing remote read requests to              
the upstream map tasks from which data needs to be fetched. To facilitate this, the Shuffle                
Block Fetch Iterator interacts with a Shuffle Client Fetch Blocks module. Each such module is               
responsible for issuing network requests to a single upstream mapper and enqueuing the             



responses into the results queue. Each Shuffle Client Fetch Block runs on its own dedicated               
CPU thread. The Shuffle Block Fetch Iterator limits the total number of bytes of data that are                 
outstanding on the network and waiting for deserialization on the results queue to a              
“maxFlightInBytes”. This is to ensure that the executor does not run out of memory due to the                 
results queue having too much data enqueued. 
 
An important design decision is on what the size of each individual request to an upstream                
mapper should be. Apache Spark limits each request to be a maximum size of              
maxFlightInBytes/5. This magic number of 5 was chosen so that Spark can concurrently fetch              
data from at least five machines at the same time and not incur heavy throughput penalties. 

4. Implementation 
Based on the design of shuffle as mentioned in section 3, we implemented the same using                
TCP/IP and RDMA to compare and contrast the tradeoff of offloading shuffle operations onto              
the network. 

Socket based TCP/IP 
 
Figure 2 shows the details of the Mapper and the Reducer process. The entire shuffle               
processing involves a set of Mapper (Server) processes running on nodes in a cluster with data                
in memory and a Reducer (Client) process in another node that intends to pull data from the                 
mapper. So, when the mapper process starts, it instantiates a dictionary of key-value pairs and               
fills it with randomized data of specific size (configurable). Then, it starts listening for              
connections on the specified port. 
 
The Reducer process, when it starts, reads a configuration file with details of servers (mapper)               
and spawn threads for each mapper (Communication threads) and pins them to individual             
cores. It also spawns a separate thread on a specific core (Grouper thread) that runs the                
deserialization and grouping (a function) logic over the received data. Each communication            
thread is assigned a remote mapper and it is responsible for all communication with the               
respective server. The mapper threads initiate TCP socket connection and send a request             
message intending to start the shuffle process. On receiving the request, the mapper spawns              
two threads – one to receive requests from client and another to send replies back to client with                  
serialized key-value pair data. Then, it replies back Acknowledgement to the reducer confirming             
its readiness to start data transfer. 



 

Figure 2:​ Description of TCP/IP implementation of Shuffle process and different steps involved 
in the communication  

 
The reducer, then starts the data transfer by sending requests and gets back replies. The               
threads, on receiving serialized data, enqueues them on a shared queue. The grouper thread              
dequeues data from the queue, deserializes the received data, converts them into key-value             
pairs and inserts them into the result data structure. The result data structure holds the keys                
with a list of values received from the mapper. The reducer process limits the maximum               
requests sent to each server (as with the actual design of the shuffle in spark). The size of key,                   
value pairs and number of records to reply determines the read length and maximum shuffle               
size in our experiments. We have implemented the design in C and used the Protocol Buffer                
library to serialize and deserialize the data exchanged between the server and the client. 
 

 



RDMA  

 
Figure 3:​ Shows the different steps involved in client (reducer) pulling data from the server 

(mapper) using RDMA operations 
 
Client (reducer) establishes a connection with the server. Following that, the server (mapper)             
allocates memory which is pinned to the main memory and sends the client a pointer to the                 
pinned memory region as well as a remote key, needed to read data from this memory region.  
Once the client (reducer) has details about the memory region within the servers to pull data                
from, the client sends out one-sided read requests to the servers. The server CPU cycles are                
saved in the process, because the client just pulls data from the memory region, using one                
sided read operations. We also achieve kernel bypass on the client in the process.  
The client has a granularity of read associated (read length) with each remote read operation,               
and reads the contents of the entire memory region over multiple remote read requests.  
 



5. Evaluation 
We ran our experiments in a cluster with 4 nodes in which 3 nodes assume the role of mapper                   
that contains data and another node runs the reducer that pulls data from the mapper. To                
determine the impact of shuffle with respect to CPU processing and the time spent in               
communication between nodes, we varied the total size of shuffle data and the read length in                
each request. We measured the CPU utilization, time taken to complete each request and clock               
cycles spent during each operation. To ensure uniformity, all our experiments are run after              
setting the CPU frequency to performance mode. All experiments were repeated for both our              
implementation - TCP/IP and RDMA and the results were compared.  

Cost on time 
To measure the impact of shuffle with respect to time, we ran a set of 3 experiments. In the 1st                    
experiment, we set the total data size to be 0.5 MB on each mapper and measured the total                  
time taken to complete the shuffle.We set the maximum request in flight at a time to be 3. We                   
repeated the experiment for data size of 1 MB and 5 MB. Figure 4, 5, 6 shows the comparison                   
between TCP/IP and RDMA for the respective data sizes. 

  
Figure 4:​ Variation of total shuffle time with different read size and total data size of 0.5 MB 

  
Figure 4 shows the variation of total shuffle time with respect to different read size. The total                 
size of the data retrieved is 0.5 MB. We observed that, in TCP implementation as the size of                  
each reply increases, the total shuffle time reduces. This is because, with larger read size the                
total number of request-response decreases, and thus the time spent by the kernel processing              
the request and response packets reduces. With RDMA implementation, since RDMA           
operations are one-sided operations without the kernel interventions on the client, the time             
taken to complete shuffle stays almost the same despite the different read size. 



 

 
Figure 5:​ Variation of total shuffle time with different read size and total data size of 1 MB 

 

 
Figure 6:​ Variation of total shuffle time with different read size and total data size of 1 MB 

 
Figure 5 shows the result for the experiment repeated for 1 MB of total data. With TCP, we find                   
that when the read size is 2KB, the total completion time of shuffle increases. Further,               
investigation of metrics revealed that the time taken for total shuffle time is dominated by the                
deserialization thread. Same as in the previous experiment, RDMA has similar completion time             
across different read sizes and better total completion time irrespective of the read size. Figure               
6 shows the result of the same experiment repeated for 5 MB of total shuffle data. Similar to                  
experiment with 0.5 MB of data, we find that as the read size increases, due to the decrease in                   



number of requests, the total completion time of TCP decreases as a result of lower kernel                
overheads. With increase in total data size, RDMA has total completion time order of magnitude               
lesser than TCP for smaller read sizes. 
 

Cost on CPU Utilization 

 
    ​Figure 7: ​Variation of CPU utilization on the server with read length for TCP/IP 
implementation 
 
Figure 7 measures the variation of CPU utilization with read length for a data size of 5MB for the                   
TCP/IP implementation. For the TCP/IP implementation, we see that the CPU utilization on the              
server drops with increasing read size, because with increasing read size, the number of              
requests goes down. For the RDMA implementation, we observe the server utilization to be              
zero, because there is no CPU involvement as we pull data using one-sided reads.  



Cost on deserialization 

 
 ​Figure 8: ​Variation of shuffle deserialization with read size for a TCP/IP implementation 
 
Figure 8 measures the variation of deserialization time with read length for a data size of 1MB                 
for the TCP/IP implementation. We see that deserialization time is not as sensitive to read               
length. It initially increases and saturates to a particular value.  
 

 
                            Figure 9: ​Variation of shuffle deserialization time with the size of data read  
 
Figure 9 measures the impact of variation in the shuffle time with an increase in data size, for a                   
fixed read length of 2048 bytes. As the data size increases, the CPU deserialization time also                



increases. This is because the overhead associated with the deserialization of more data only              
goes up as we have more data that is being pulled from other machines.  

6. Conclusion 
RDMA helps accelerate the shuffle operation on the reducer primarily via kernel bypass. This is 
especially beneficial when the number of read requests necessary to collect the data from 
mappers is large, which would incur significant kernel overhead. Additionally, it also improves 
the CPU utilization on the mappers by freeing up CPU resources for other activity, because of 
the one-sided nature of the read operations that the reducer uses to accumulate the data from 
the mappers. On the contrary, usage of RDMA has the disadvantage of having to keep some 
memory on the mapper side pinned while the remote reads are in progress, which reduces the 
memory available to other processes in the system.  
 
All our experiments show that the deserialization of data has a significant cost on CPU cycles. 
As the number of read requests increases, we see that the total completion time of shuffle is 
dominated by the thread which does deserialization of data and applying a user-desired function 
over it. Given such significant overhead of deserialization on the reducer side, we suggest that 
hardware offload of the deserialization could free up CPU cycles on the reducer side. 


