
Scheduling for HTAP systems on CPU-GPU clusters

Krati Agrawal Arjun Balasubramanian Shivangi Kamat Giri Prasanna Mugunda Krishnan

University of Wisconsin - Madison

Abstract
HTAP systems that run a combination of OLAP and OLTP
queries can be built to leverage the advantages offered by
the next generation hardware such as GPUs and accelerators.
GPUs have abundant parallelism and high memory bandwidth,
and thus there has been considerable interest in utilizing GPUs
to accelerate OLAP workloads. In this paper, we explore
the idea of how a cluster of CPU-GPU co-processor servers
can be used to accelerate HTAP workloads. We tackle the
interesting problem of scheduling this mixture of queries
across a heterogeous cluster by focusing on efficient query
routing, and GPU memory management. We propose EEVEE
1, a heuristic-based scheduler for HTAP systems that performs
intelligent scheduling decisions to improve overall latency
of query execution. We implemented a simulator to evaluate
the performance of executing HTAP queries on a cluster of
CPUs and GPUs. We evaluate our design on a series of micro-
benchmarks and SSB workloads and obtain gains of up to 6X
by using a heterogeous cluster, and our heuristic scheduling
policy results in 4X improvement in the makespan compared
to our baseline policy.

1 Introduction

Database systems have become commonplace and are widely
adopted at large scale by multiple organizations [28, 39]. Tra-
ditionally, database systems are designed to serve one of the
following two purposes -
(i) Online Transaction Processing (OLTP). OLTP systems
are designed to handle a high volume of concurrent transac-
tions. These transactions typically touch only a small fraction
of the resident data and can therefore be executed quite fast.
According to the standardized TPC-C benchmark [2], today’s
state-of-the-art OLTP systems can execute more than a million

1Eevee is a Pokémon that evolves into eight different pokemon through
various methods. E.g. It evolves into Flareon when exposed to a Fire Stone,
or Vaporeon when exposed to a Water Stone, and so on. In our work, EEVEE
performs intelligent query routing onto CPUs or GPUs depending on the
type of query.

transactions per second. Examples of OLTP systems include
banking transaction processing and online sales processing.
(ii) Online Analytical Processing (OLAP). About two
decades ago, a new use-case for the usage of database systems
emerged - Large companies wanted to use database systems
for running Business Intelligence (BI) queries to obtain in-
sights for data-driven decisions. These OLAP/BI queries were
different from OLTP queries - The queries were typically long-
running and involved scanning through a large portion of the
resident data. Examples of OLAP queries include aggregated
online sales statistics by seller and geographical region.

Initial attempts were made to run these OLAP queries
on OLTP systems. However, this resulted in a number of
critical issues. Since OLAP queries are long running and
read a large amount of data, it severely restricts the ability of
OLTP queries to lock and update data. This in turn leads to
poor concurrency and head-of-line blocking for OLTP queries.
Additionally, since OLAP queries are CPU intensive since
they typically involve a number of join operations. This leads
to severe resource contention and thereby affects the running
time of latency sensitive OLTP transactions.

The data staging architecture [19] was devised to overcome
the above mentioned problems. The idea was to carry out
transaction processing in a dedicated OLTP system. Separate
data warehouses were installed to serve OLAP queries. Peri-
odically, data changes from the OLTP system are extracted
and loaded into the data warehouse through a process known
as Extract-Load-Transform (ETL).

The delegation of OLTP and OLAP query processing to
separate systems presented a number of advantages. It al-
lowed OLTP queries to run at high concurrency and not suffer
from contention from OLAP queries. It also paved the way
for independent optimizations in these systems such as the
use of columnar storage format for OLAP systems [3, 36].
However this architecture traded off the advantages with one
key disadvantage - the ETL pipeline is executed only periodi-
cally and this means that OLAP queries more often than not
operate on a stale copy of the data.

Recently, there has been a strong urge to design database

systems that can support real-time business intelligence [5].
The current ETL pipeline architecture is fundamentally at
odds with this new requirement. Consequently, database de-
signers have advocated building Hybrid Transactions and
Analytics Processing (HTAP) systems that can support both
OLTP and OLAP queries in a single system. The idea here is
to not move analytical processing in its entirety to HTAP sys-
tems, but only an important subset of queries that can benefit
from real-time data. Thus, the design of HTAP systems has
been a hot research topic amongst researchers from academia
and industry [13, 21, 29, 34].

In another line of work, researchers have been looking at
how to speed up query processing by using emerging tech-
nology such as smart storage devices [12, 22, 33, 37], custom
accelerators [42], and low latency networks [6,9,24,45]. Thus,
it would be interesting to look at how HTAP systems can be
designed to leverage the benefits of these technologies.

Thus, we propose an initial design of EEVEE, a HTAP sys-
tem that can handle a mixture of OLTP and OLAP queries
and schedule them across a heterogeneous cluster comprising
of a CPU and multiple GPUs. EEVEE is designed to be an
in-memory, deterministic database, where all tuples can fit in
CPU DRAM. GPU memory on the other hand has limited
capacity and can hold only a subset of the tuples. EEVEE
divides the incoming queries into epochs and uses a novel
scheduling algorithm to decide where each transaction must
execute. For sake of simplicity, EEVEE assumes that OLTP
queries can execute only on CPUs while OLAP queries can
execute on either a CPU or a GPU. EEVEE uses MVCC [8] for
concurrency control and data versioning and offers strict lin-
earizability guarantees. Finally, EEVEE consists of a memory
manager per GPU that implements a novel two-level eviction
policy to manage limited GPU DRAM.

In this work, we focus on two important and novel aspects
related to our vision of EEVEE -
Scheduling - Scheduling plays an important role in ensur-
ing that shared clusters operate at high utilization. Resource
management in this regard is a challenging problem and
has been explored in diverse domains such as CPU schedul-
ing [10, 23, 25], congestion control in networks [4, 17, 27, 41],
big data task scheduling [11, 14, 15, 18, 38, 40, 44], and GPU
cluster scheduling [16, 26, 31, 32, 43]. For EEVEE, we require
a scheduler that accounts for the heterogeneity of the under-
lying hardware substrates in the cluster and also be aware
of the overheads incurred by transferring data over intercon-
nects that connect the hardware devices. No previous sched-
uler accounts for these factors and hence we propose a new
scheduling algorithm for HTAP scheduling. The scheduling
algorithm needs to make two decisions. First, the algorithm
must decide the best location (CPU/GPU) to execute each
transaction. Second, the algorithm must finalize an order for
the execution of the transactions.
GPU Memory Management - GPUs have limited DRAM
capacity which needs to be managed properly. The goal of a

GPU memory manager should be to keep tuples in memory
that can potentially benefit future transactions that execute on
the GPU. This would help reduce the interconnect overheads
associated with offloading the query execution to the GPU.
EEVEE adopts a memory management policy that imposes
lazy eviction, i.e, tuples are evicted from GPU memory only
when there is no memory available to accommodate new
incoming tuples. We propose a two-level eviction algorithm
to decide which tuple(s) to evict in such a scenario.

To study scheduling and GPU memory management, we
built a discrete event-based simulator in Java that enables us
to study the regimes imposed by our scheduling algorithm
and compare GPU memory management policies. The simu-
lator is completely configurable and is built as a collection of
pluggable modules. We have open-sourced our simulator at
https://github.com/Arjunbala/HTAP-Scheduling to enable re-
searchers to further study and quickly evaluate various aspects
of HTAP systems.

We evaluate the proposed scheduling algorithm and two-
level eviction policy on the simulator using the StarSchema
Benchmark (SSB) [30] with a scale-factor of 1. Our results
show that the scheduling algorithm and two-level eviction
can offer upto ~6X improvement in makespan compared to
baseline approaches. Additionally, we present a set of micro-
benchmarks that evaluate the behavior of the algorithms un-
der a variety of conditions. Finally, we perform sensitivity
analysis to illustrate the regimes imposed by our scheduling
algorithm.

The rest of this paper is arranged as follows. Section 2 cov-
ers our HTAP system architecture and explains the scheduling
policy and GPU memory management in detail. Section 3 con-
structs the implementation of EEVEE simulator and explains
its components. Section 4 then evaluates EEVEE system with
workloads and discusses the observed trends. Section 5 pro-
poses some avenues for further extension of this work, and
finally section 6 concludes this paper.

2 HTAP System Architecture

EEVEE is an in-memory CPU database scheduler, which effi-
ciently schedules OLTP and OLAP transactions on a hybrid
hardware consisting of one CPU and multiple GPUs. We
make two assumptions - first, the CPU memory is big enough
to house the entire database, and second, that OLTP transac-
tions can only be scheduled on a CPU, while OLAP trans-
actions can be scheduled on either hardware. An incoming
query first goes through a Global Scheduler, which divides
transactions into epochs. The epoch time, which is how long
an epoch lasts, is a configurable parameter. Transactions in
each epoch are then batched and sent to the Transaction Policy
Scheduler.

Transactions need to be allotted a device for execution, i.e,
CPU or one of the GPUs, and also ordered for execution on the
device at which they are scheduled. These critical decisions

https://github.com/Arjunbala/HTAP-Scheduling

Figure 1: EEVEE HTAP System

are taken by the Transaction Policy Scheduler, which per-
forms this decision making at the granularity of each epoch
for a batch of transactions in that epoch. Parameters such
as speed ups offered by GPUs for OLAP queries, and the
PCIe overheads factor into this decision making process (Sec-
tion 2.1).

The database maintains the version count for each tuple so
as to provide concurrency control between transactions. When
OLTP transactions are run on a CPU which updates a tuple
data, the version count for that tuple is incremented. This is
similar in spirit to MVCC [8]. While older versions of data can
exist in the GPU memory, the tuples will be updated before
any new OLAP transactions asks for that tuple to guarantee
linearizability.

In our system, the CPU memory is large enough to hold the
database in its entirety. However, the GPU memory can only
hold a subset of tuples. We assume that at any moment, GPU
memory is large enough to at least store the tuples required
to execute the current OLAP query on that GPU. EEVEE has
a memory management module for maintaining the tuples in
GPU memory. This is further discussed in section 2.2 where
we elaborate on the various eviction policies employed by
EEVEE.

To preserve the data integrity of conflicting transactions,
EEVEE guarantees linearizability in conflicting transactions.
Tuples can be read by multiple transactions in parallel, but
only one transaction can update a tuple at a time. Hence,
tuples which are to be updated are protected by locks. For
resolving conflicts, each transaction grabbing a write tuple,
also updates the time when the transaction will complete and
hence release the lock. When a second transaction tries to
grab the lock for the same tuple, it is not granted the lock and

is made to back off until the previous transaction completes.

2.1 HTAP Scheduling Policy
In EEVEE, a scheduler accepts a list of queries, each of which
may be an OLAP or OLTP query. A scheduler must decide on
where each query must execute - this may either be the CPU
or one of the GPUs in the cluster. Additionally, a scheduler
must decide on the order in which transactions execute while
providing the serializibility guarantee.

First, we establish a set of assumptions that we make re-
garding hardware capabilities. For a CPU with N cores, we
assume that a CPU can execute atmost N

4 transactions in par-
allel at any given point of time. We further assume that a GPU
can only execute one transaction at a time. We make this
assumption since current abstractions for spatially multiplex-
ing the GPU such as CUDA streams [1] do not offer perfect
isolation guarantees.

We now describe the list of factors that we consider impor-
tant while deciding which transaction should get more priority
for executing on a particular GPU. First, we believe that the
relative speedup obtained by running a particular transaction
on a particular GPU is an important factor that needs to be
considered. Due to the nature of its operations, certain kinds
of OLAP queries may benefit more from GPU acceleration
than others [35]. Additionally, differences in speedup may
arise due to difference in GPU generations (e.g. Volta vs Pas-
cal). Second, we believe that it is more favorable to schedule
those transactions that incur lesser PCIe overheads due to data
movement over the interconnection network. Several factors
influence the amount of data that needs to be transferred. It is
preferable to schedule those OLAP queries that have a smaller

Pseudocode 1 EEVEE Scheduling Algorithm
1: TRANSACTION . Each individual transaction
2: TRANSACTIONLIST . List of transactions
3: α [0,1] . Knob for transaction scoring mechanism
4: β [0,1] . Knob for transaction assignment to GPU
5:
6: . Given a list of transactions, decide the placement and execution order of these

transactions
7: procedure SCHEDULETRANSACTIONS(TRANSACTIONLIST TL)
8: TRANSACTIONLIST conflictingOLTP = GETOLTPCONFLICTS(TL)
9: Schedule transactions in conflictingOLTP on CPU ordered by accept stamp

10: TRANSACTIONLIST remainingTransactions = TL - conflictingOLTP
11: TRANSACTIONSCORES = {}
12: for TRANSACTION T in remainingTransactions do
13: if T is OLAP then
14: for GPU id in the cluster do
15: TRANSACTIONSCORES[T][gpuID] = COMPUTESCORE(T, id)
16: end for
17: else
18: Consider T for execution on CPU, ordered by timestamp
19: end if
20: end for
21: while any OLAP transaction remains unscheduled do
22: TRANSACTION T, GPU g1 = MAXSCORE(TRANSACTIONSCORES)
23: GPU g2 = GETLEASTASSIGNEDGPU()
24: Generate random number R between 0 and 1
25: if R ≤ β then
26: Schedule T on GPU g1
27: else
28: Schedule T on GPU g2
29: end if
30: Remove T from consideration while finding max score
31: end while
32: end procedure
33:
34: . Compute alignment score of a transaction towards a particular GPU
35: procedure COMPUTESCORE(TRANSACTION T, GPU gpu)
36: return al pha∗ tcpu

tgpu
+ (1-al pha)*(1-PCIEOVERHEADS)

37: end procedure
38:
39: . Get the highest remaining score
40: procedure MAXSCORE(TRANSACTIONSCORES scores)
41: end procedure
42:
43: . Get the GPU with least assigned transaction time
44: procedure GETLEASTASSIGNEDGPU
45: end procedure
46:
47: . Get the OLTP transactions that conflict with OLAP queries
48: procedure GETOLTPCONFLICTS(TRANSACTIONLIST TL)
49: end procedure

read set on a GPU since it minimizes the amount of data that
needs to be transferred from the host to the device. On similar
lines, it is preferable to schedule those transactions on a GPU
for which tuples from the read set already reside on the GPU.
Additionally, we must consider the size of the query output
since this will determine the device to host transfer time.

To model the above factors, we compute the below quanti-
ties for every OLAP queries t on every GPU -

Speedupt,gpu = tcpu/tgpu (1)

where tcpu is the running time of the transaction on CPU,
while tgpu is the running time of the transaction on the partic-
ular GPU.

Overheadst,gpu = HToD(t,gpu)+DToH(t) (2)

where HtoD is the time required to transfer required tuples
from the read set from the CPU to the GPU. Note that this

excludes those tuples that are already resident on the GPU.
DToH is the time required to transfer the query output from
the GPU to the CPU.

Now, a query t has greater affinity towards a GPU gpu
if Speedupt,gpu is more and Overheadst,gpu is lesser. Thus,
for every transaction t and GPU gpu, we assign a score that
captures both of these factors as below (Line 35 in Algorithm
1) -

Scoret,gpu =α∗Speedupt,gpu+(1−α)∗(1−Overheadst,gpu)
(3)

where α is a knob used to adjust the relative importance
of the two factors. We perform sensitivity analysis over α in
Section 4.3.

The final algorithm for scheduling transactions is presented
in Algorithm 1. As a first step, we identify those OLTP
transactions that conflict with any OLAP query. We then
schedule such transactions on the CPU with immediate effect.
This is to ensure that such OLTP transactions do not end up
getting queued behind long-running OLAP queries. Next, for
each OLAP query and every GPU pair, we compute a score
as described in equation 3.

Now, while any OLAP query remains to be scheduled, we
greedily pick the query and GPU pair that has the maximum
score. Once we pick such a query, we can either schedule
the query on the GPU that was associated with the maximum
score (we term this as best fit GPU) or on a GPU that has
the least amount of OLAP query execution time currently
assigned it (we term this as least loaded GPU). We use a knob
β to decide whether to schedule the query on the best fit or
the least loaded GPU. As shown in line 24 of Algorithm 1, we
generate a random number between 0 and 1. If the generated
number is less than β, we schedule the query on the best fit
GPU and otherwise on the least loaded GPU. We perform
sensitivity analysis of knob β in Section 4.3.

With the above steps, we have decided the location for
execution of each query. We then proceed to execute the
query in the order of their accept-stamps. In case of a tie, we
schedule the shorter query first for execution.

2.2 GPU Memory Management

While we have an effective HTAP Scheduling policy, we need
a robust memory management policy for our system. GPU
DRAM is severely limited in terms of capacity (typically few
GBs), and significant clock cycles are incurred in transferring
useful tuples over the PCIe interconnect. Every tuple on a
GPU has an extra field which logs a timestamp of when it
was loaded onto the GPU, or when it was last accessed as
part of a query. In our system, we assume that the GPU is
able to hold all the tuples necessary to execute an OLAP
transaction. EEVEE adopts a two-level eviction algorithm
for memory management, but also provides capabilities to

switch to simpler management modes like Least Recently
Used (LRU).

2.2.1 Least Recently Used (LRU) Replacement Policy

Least Recently Used (LRU) is a type of recency-based replace-
ment policy that considers a tuple’s latest reference within
its lifetime in its decision making. LRU preferentially evicts
the least recently used tuples in the GPU’s working set. This
is accomplished by tuples maintaining a timestamp that log
the last access time of the tuple within the GPU. LRU starts
replacing tuples with the earliest timestamps to make room
for incoming tuples. Our algorithm might suffer from thrash-
ing if future queries executing on the GPU require tuples that
were evicted as a result of LRU replacement decisions.

2.2.2 Two-Level Replacement Policy

We propose an intelligent two-level replacement policy that
considers the fact that OLTP queries execute exclusively on
the CPU, while OLAP queries execute on either the CPU or
the GPU. An OLTP query executing on the CPU might change
the values of tuples that are currently residing in other GPUs.
To keep track of such changes, we maintain a version number
(VN) with every tuple in the device working set. A change
in a tuple due to an OLTP query only increments its version
number in the CPU’s copy. When a GPU needs to make space
to accommodate incoming tuples, it first compares the version
number of all the tuples in its current working set, and flags
all the tuples that are no longer up-to-date on the GPU. It
removes all these tuples from the working set, as they would
anyway require a transfer from the CPU to ensure the query is
working on the correct data. This is the first-level of our policy,
and we stop here if it satisfies our memory requirement. If we
still require more memory on the GPU, we deploy a second-
level LRU policy which evicts other tuples in the working set
in the same manner described in the previous section until we
make enough room for the incoming tuples. As part of this
policy, we also perform a regular clean-up of all stale tuples
on the GPU due to the first-level eviction.

The two-level eviction policy is explained in figure 2. Con-
sider an execution with three queries, as shown in the table
at the top of the figure. First, an OLAP query is executed
on GPU, for which the scheduler imports tuples required by
that query into GPU memory, as shown in (i). The second
query, which is an OLTP query is executed on the CPU, which
updates the tuple versions, as shown in (ii). When the third
query, which is an OLAP query is scheduled on GPU, the
scheduler needs to evict some tuples (precisely 3 in this case)
to make room for the tuples required by the incoming query.
In the two-level eviction policy, the first level evicts the modi-
fied tuples for which the tuple version on GPU is older than
that on the CPU. This is highlighted in red in (iii). Further, as
more memory is required, the tuples are evicted based on a

Figure 2: Two-level eviction policy example. Tables (i) to (vi) show
data about tuples in GPU memory (i) Before executing Q1 (ii) After
Q2 is executed on CPU, (iii) Two-level eviction policy: level 1 (iv)
Two-level eviction policy: level 2 (v) Post eviction of tuples (vi)
Tuples imported for Q3

policy (for example LRU or Random) as shown in (iv). This
is done until there is enough space for the tuples for the sched-
uled transaction (iv) and then the new tuples are imported into
GPU memory as in (vi).

3 Simulator Implementation

Figure 3: EEVEE Implementation

EEVEE is a java based, event-driven, single threaded HTAP
simulator. The simulator instantiates a cluster consisting a
multi-core CPU and several GPUs, each with a definite mem-
ory size. The simulator has been carefully designed with
configurability in mind, hence there are several knobs with
which the user can parameterize EEVEE to best fit with their
application requirements.

The simulator code can be divided into five blocks as shown
in the Figure 3. These five components interact with one

another to provide for the correct functionality for EEVEE.
Workload defines the queries run on EEVEE and stores the

data related to each query. For example the duration of OLTP
transactions on CPU and OLAP transactions on both CPU
and the GPU. They also hold the read and write sets for each
query.

Database describes the structure of transactions and tuples
and also holds the associated metadata required for schedul-
ing the transactions. For example, for each transaction, the
metadata associated with it would include its ID, time of ar-
rival, the running time estimates on each hardware device,
whether it is OLAP or OLAP, and its read and write sets.

Events describes an Event Queue, where transactions are
enqueued for scheduling. This global event queue helps main-
tain ordering between epochs and handles transactions in
the queue. Events also hold transaction start and end events,
which basically help the simulator to perform activities re-
quired for that action. For example, at the start of a transaction,
the simulator records the start time, priority of the transaction
and the device on which the transaction gets scheduled.

Scheduling covers the heart of EEVEE , which describes
the global scheduler and the transaction policy scheduler. The
Java class Transaction Ordering Policy Factory integrates
the policies implemented into effect. Currently, EEVEE has
two ordering policies, heuristic and random. As described in
section 2.1, the scheduler also incorporates parameters such
as speed ups offered by GPU, PCIe overheads, and scheduling
OLAP on a best fit GPU versus a least loaded GPU, which
are configurable at the setup time.

The GPU memory management is another critical feature
of our scheduler. Currently, EEVEE provides three eviction
policies for managing GPU memory, namely LRU, Random
and Two-level. To add another policy, one simply needs to
add the policy to the Memory Management Policy Factory
class and extend the Memory Management class to code in
their policy. This seamlessly combines the new policy with
the simulator and can be passed in as a configuration while
setting up the simulator.

For each component described above, there are several con-
figurable parameters which can be set up before simulating
EEVEE .

4 Evaluation and Results

We evaluate EEVEE using our event-driven simulator on a
cluster comprised of 32 CPUs and 2 GPUs. We use SSB
(StarSchema benchmark) for the evaluations and compare
our HTAP scheduler against three other baselines which we
describe below. We perform some initial measurements on the
workload and feed the data obtained to the simulator which
can be approximated as the data obtained from the query
optimizer such as [7] before the execution begins. We use a
variety of metrics to show that EEVEE performs significantly
better than the other baselines on SSB workload.

Size (in Bytes)

Ti
m

e
(in

 u
s)

1

10

100

1000

10000

10000 100000 1000000 10000000

HostToDevice Time Sel - 0.1 DeviceToHostTime
Sel - 0.2 DeviceToHostTime Sel - 0.5 DeviceToHostTime

Sel - 0.8 DeviceToHostTime

Figure 4: Host to Device and Device to Host transfer time

Workload. For the OLAP queries, we use StarSchema bench-
mark (SSB) in our evaluation. SSB consists of five tables -
part, customer, supplier, date and lineorder. We use a scale
factor of 1 to generate the SSB tables.

In order to simulate the OLTP transactions, we used TPC-
C benchmark for our experiments. However, since an HTAP
system has only one set of tables for OLAP and OLTP transac-
tions, the data extracted from the offline TPC-C experiments
is used on SSB tables in the simulator.
Initial measurements. We extract important characteristics
from the workloads relevant to our evaluations and feed them
into the simulator. We perform offline experiments to calcu-
late - i) the execution times on CPU for OLTP, and both CPU
and GPU for OLAP queries, ii) PCIe overheads for transfer-
ring data from host to device and vice versa, and iii) building
read/write sets of the transactions.

Figure 4 shows the time taken to transfer data from host
(CPU) to device (GPU), as well as device to host for different
selectivity ratios. These results are used to determine the PCIe
overheads based on the amount of data transferred between
CPU and GPU during our simulations.

The results from these experiments are assumed to be the
data provided by a query optimizer and is therefore known
before the query execution begins on the simulator.
Baselines. We compare EEVEE (i.e. heuristic query routing
with two-level memory management on GPU) against three
baselines: i) CPU-only system, ii) Random query routing with
LRU memory management, and iii) heuristic query routing
with LRU memory management. These evaluations help us
highlight the gains achieved from heuristic and two-level
memory management individually.
Metrics. We use a variety of metrics to evaluate EEVEE:
Makespan : Makespan is used to compare the overall run
time of a fixed set of transactions on EEVEE and different
baselines.
Fairness of resource utilization : We use Jain’s fairness in-
dex [20] to determine the fairness of resource utilization. This
helps evaluate the ability of the scheduler to spread work

Heuristic+2-Level CPU only Random+LRU Heuristic+LRU
0

5

10

15

20

25

30

M
ak

es
pa

n
(s

)

Figure 5: Comparison of makespan against different baselines

Heuristic+2-Level CPU only Random+LRU Heuristic+LRU
0

2

4

6

8

10

No
rm

al
ize

d
PC

Ie
 O

ve
rh

ea
ds

Figure 6: Comparison of PCIe overheads against different baselines

across the cluster and avoid local hotspots. It is computed
using the following equation:

f (x1,x2....xn) =
(∑n

i=1 xi)
2

n∑
n
i=1 x2

i
(4)

Here, n is the number of available resources, and xi denotes
the total time for which ith resource is active. The index, f ,
ranges from 1

n (worst case) to 1 (best case).
Normalized PCIe Overheads : We calculate the PCIe
overheads per OLAP query for transferring tuples from the
main memory to the GPU devices and back before making a
scheduling decision.
Latency and Queuing Delay : We present the distribution
of times to execute a transaction (latency), as well as the time
spent in waiting for its turn to execute (queuing delay) for all
transactions.

4.1 Macrobenchmarks
We evaluate EEVEE against the three baselines on SSB work-
load. The cluster consists of 32 CPU cores and 2 GPUs, and
each GPU device has 30MB memory. The epoch time is
200ms. We use α = 0.5 and β = 0.0 which is derived from
our sensitivity analysis presented in Section 4.3. The OLAP
queries comprise 25% of the total transactions. Requests ar-
rive at a constant rate of 50 requests per second at the sched-
uler.

Figure 5 shows the makespan of EEVEE against the differ-
ent baselines. We see 6X improvement over CPU-only system
by using a heterogeneous system, and 4X gains over random
query routing by optimizing the scheduler to take into account
the speedup obtained from GPUs and PCIe overheads for
OLAP queries. The gains due to two-level memory manage-
ment policy over LRU are minor but this could be workload
dependent, and we might be able to see better results with
more workloads. Figure 6 presents the PCIe overheads. The
CPU-only system does not have any GPUs and therefore no
PCIe transfers which is indicated by a blank space. EEVEE
sees a 2X reduction in PCIe overheads over the random pol-
icy because the heuristic policy ensures that the GPU which
already has the tuples from the read set is given priority.

Figure 7 and 8 show the distribution of latency and queuing
delay respectively for EEVEE and all the baselines. We see
that EEVEE decreases the latency and queuing delay by a
factor of 4X over random policy and 6X over CPU-only
system.

0 5 10 15 20 25 30
Transaction Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 T

ra
ns

ac
tio

ns

Heusristic + 2-level
CPU only

Random + LRU
Heuristic + LRU

Figure 7: Comparison of latency against different baselines

4.2 Microbenchmarks

4.2.1 Cluster Size

We evaluate the impact on makespan and PCIe overheads as
we increase the number of GPUs in the cluster as shown in

0 5 10 15 20 25 30
Queuing Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 T

ra
ns

ac
tio

ns

Heusristic + 2-level
CPU only

Random + LRU
Heuristic + LRU

Figure 8: Comparison of queuing delay against different baselines

Figure 9. As expected, the overall execution time reduces
with more GPUs as there are more resources available to run
the transactions in parallel. The PCIe overheads per OLAP
query increase because more tuples need to move across the
interconnection network (PCIe) with increase in number of
GPUs.

1 2 4
Number of GPUs

0

2

4

6

8

10

M
ak

es
pa

n
(s

)

(a) Impact on Makespan

1 2 4
Number of GPUs

0

1

2

3

4

5

6

7

No
rm

al
ize

d
PC

Ie
 O

ve
rh

ea
ds

(b) Impact on PCIe overheads

Figure 9: Impact of cluster size

4.2.2 Ratio of OLAP vs OLTP transactions

We increase the percentage of OLAP queries from 25% to
50% and 75% and observe the impact on makespan and PCIe
overheads. Figure 10 shows that increasing the percentage
of OLAP queries increases the makespan since OLAP are
longer running transactions than OLTP. The PCIe overheads
per OLAP query come down because most of the OLAP
queries execute on tuples that are already residing in the GPU
memory.

25% 50% 75%
Percentage of OLAP queries

0
2
4
6
8

10
12
14
16

M
ak

es
pa

n
(s

)

(a) Impact on Makespan

25% 50% 75%
Percentage of OLAP queries

0

1

2

3

4

5

No
rm

al
ize

d
PC

Ie
 O

ve
rh

ea
ds

(b) Impact on PCIe overheads

Figure 10: Impact of ratio of OLAP vs OLTP

4.2.3 Requests per second

Requests per second (RPS) parameter determines the number
of transactions that are received per second at the simulator.
An increase in RPS naturally increases the overall execution
time of the simulation because of more number of transactions.
The PCIe overheads per OLAP query reduce because number
of OLAP queries increase and most of them execute on tuples
already present in GPU memory, same as what we discussed
in Section 4.2.2.

50 100 200
Requests per second (RPS)

0

5

10

15

20

M
ak

es
pa

n
(s

)

(a) Impact on Makespan

50 100 200
Requests per second (RPS)

0

1

2

3

4

5

No
rm

al
ize

d
PC

Ie
 O

ve
rh

ea
ds

(b) Impact on PCIe overheads

Figure 11: Impact of Requests per second

4.3 Sensitivity Analysis

We perform sensitivity analysis over knobs α and β described
in Section 2.1 to study the impact on makespan and fairness
of resource utilization. Figure 12 shows that lower values
of β (more specifically, β = 0.0) result in shorter makespan
indicating that splitting the workload uniformly across all
GPUs is better than simply picking the best fit GPU for each
OLAP query. We also see that higher values of α (i.e. α≥ 0.5)
are favourable which implies that GPU acceleration is more
important than PCIe overheads for this workload.

Figure 13 shows the impact of α and β on Jain’s fairness
index. An index value closer to 1 indicates uniform resource
utilization. Lower values of β (more specifically, β = 0.0)
results in fairness index above 0.9 because the scheduler
only cares about scheduling the queries in such a manner so
that all the devices have close to equal execution time, and
thus ensuring fair resource utilization. Lower values of α (i.e.
α≤ 0.5) give slightly better fairness index values.

Using the observations from the above analysis, we choose
α = 0.5 and β = 0.0.

alpha

0.0 0.2 0.4 0.6 0.8 1.0

beta

0.0
0.2

0.4
0.6

0.8
1.0

M
ak

es
pa

n
(s

)

6
7
8

9

10

11

Figure 12: Impact of α and β on makespan

alpha

0.0 0.2 0.4 0.6 0.8 1.0

beta

0.0
0.2

0.4
0.6

0.8
1.0

Ja
in

's
Fa

irn
es

s

0.5

0.6

0.7

0.8

0.9

Figure 13: Impact of α and β on fairness of resource utilization

5 Future Work

There is a lot of scope for widespread adoption, and research
on HTAP systems in the future. Our work tackled the problem
from the scheduling aspect, and it can be further improved in
several ways. The following are some of the areas that can be
explored in future work:

• Use the simulator model as reference and implement
a real system with EEVEE to evaluate and correlate its
performance with our results.

• Alternate ways of ensuring consistency. In our work, we
focused on serializability, but it would be interesting to
look at methods like Snapshot Isolation.

• Extend the heterogenous cluster to include different ac-
celerators focused on OLAP queries.

• Minimize PCIe interconnect overheads by compressing
the data on the CPU end, and decompressing the data on
the GPU/accelerator end.

• Our current design transfers all columns for tuples re-
quired by a query onto the GPU. It would be interesting
to look at designs that transfer only specific subset of
required columns and evaluate the benefits of doing this.

6 Conclusions

In this paper, we studied the benefits of using a heteroge-
nous cluster to run HTAP queries. We proposed and imple-
mented a novel transaction scheduler, EEVEE to efficiently
route queries, and improve overall query execution latency.
We also evaluated a two-level tuple replacement algorithm to
manage GPU memory more effectively. Based on our evalua-
tion, we observe that we obtain upto 4x improvement in per-
formance compared to the baseline. Our contributions clearly
show that there is tons of untapped potential, and scope for
research as HTAP systems become commonplace in the near
future.

References

[1] NVIDIA CUDA C/C++ Streams and Concur-
rency. http://on-demand.gputechconf.
com/gtc-express/2011/presentations/
StreamsAndConcurrencyWebinar.pdf. Accessed:
2020-03-30.

[2] TPC-C Benchmark. http://www.tpc.org/tpcc/.
Accessed: 2020-03-15.

[3] ABADI, D. J., BONCZ, P. A., AND HARIZOPOULOS,
S. Column-oriented database systems. Proceedings of
the VLDB Endowment 2, 2 (2009), 1664–1665.

[4] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data center tcp (dctcp). In
Proceedings of the ACM SIGCOMM 2010 conference
(2010), pp. 63–74.

[5] AZVINE, B., CUI, Z., NAUCK, D. D., AND MAJEED,
B. Real time business intelligence for the adaptive enter-
prise. In The 8th IEEE International Conference on E-
Commerce Technology and The 3rd IEEE International
Conference on Enterprise Computing, E-Commerce, and
E-Services (CEC/EEE’06) (2006), pp. 29–29.

[6] BARTHELS, C., MÜLLER, I., SCHNEIDER, T.,
ALONSO, G., AND HOEFLER, T. Distributed join

http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf
http://www.tpc.org/tpcc/

algorithms on thousands of cores. Proceedings of the
VLDB Endowment 10, 5 (2017), 517–528.

[7] BEGOLI, E., CAMACHO-RODRÍGUEZ, J., HYDE, J.,
MIOR, M. J., AND LEMIRE, D. Apache calcite: A
foundational framework for optimized query processing
over heterogeneous data sources. In Proceedings of the
2018 International Conference on Management of Data
(New York, NY, USA, 2018), SIGMOD ’18, Association
for Computing Machinery, p. 221–230.

[8] BERNSTEIN, P. A., AND GOODMAN, N. Multiver-
sion concurrency control—theory and algorithms. ACM
Transactions on Database Systems (TODS) 8, 4 (1983),
465–483.

[9] BINNIG, C., CROTTY, A., GALAKATOS, A., KRASKA,
T., AND ZAMANIAN, E. The end of slow networks: It’s
time for a redesign. arXiv preprint arXiv:1504.01048
(2015).

[10] BLAGODUROV, S., ZHURAVLEV, S., AND FEDOROVA,
A. Contention-aware scheduling on multicore systems.
ACM Transactions on Computer Systems (TOCS) 28, 4
(2010), 1–45.

[11] BOUTIN, E., EKANAYAKE, J., LIN, W., SHI, B., ZHOU,
J., QIAN, Z., WU, M., AND ZHOU, L. Apollo: Scal-
able and coordinated scheduling for cloud-scale comput-
ing. In 11th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 14) (2014),
pp. 285–300.

[12] DO, J., KEE, Y.-S., PATEL, J. M., PARK, C., PARK,
K., AND DEWITT, D. J. Query processing on smart
ssds: opportunities and challenges. In Proceedings of
the 2013 ACM SIGMOD International Conference on
Management of Data (2013), pp. 1221–1230.

[13] FUNKE, F., KEMPER, A., AND NEUMANN, T. Com-
pacting transactional data in hybrid OLTP & OLAP
databases. CoRR abs/1208.0224 (2012).

[14] GRANDL, R., ANANTHANARAYANAN, G., KANDULA,
S., RAO, S., AND AKELLA, A. Multi-resource pack-
ing for cluster schedulers. ACM SIGCOMM Computer
Communication Review 44, 4 (2014), 455–466.

[15] GRANDL, R., CHOWDHURY, M., AKELLA, A., AND
ANANTHANARAYANAN, G. Altruistic scheduling in
multi-resource clusters. In 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 16) (2016), pp. 65–80.

[16] GU, J., CHOWDHURY, M., SHIN, K. G., ZHU, Y.,
JEON, M., QIAN, J., LIU, H., AND GUO, C. Tiresias:

A {GPU} cluster manager for distributed deep learn-
ing. In 16th {USENIX} Symposium on Networked Sys-
tems Design and Implementation ({NSDI} 19) (2019),
pp. 485–500.

[17] HANDLEY, M., RAICIU, C., AGACHE, A., VOINESCU,
A., MOORE, A. W., ANTICHI, G., AND WÓJCIK, M.
Re-architecting datacenter networks and stacks for low
latency and high performance. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication (2017), pp. 29–42.

[18] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GH-
ODSI, A., JOSEPH, A. D., KATZ, R. H., SHENKER, S.,
AND STOICA, I. Mesos: A platform for fine-grained
resource sharing in the data center. In NSDI (2011),
vol. 11, pp. 22–22.

[19] HYPERION SOLUTIONS CORPORATION. The Role of
the OLAP Server in a Data Warehousing Solution.

[20] JAIN, R., CHIU, D., AND HAWE, W. A quantita-
tive measure of fairness and discrimination for re-
source allocation in shared computer systems. CoRR
cs.NI/9809099 (1998).

[21] KEMPER, A., AND NEUMANN, T. Hyper: A hybrid
oltp&olap main memory database system based on vir-
tual memory snapshots. In 2011 IEEE 27th Interna-
tional Conference on Data Engineering (2011), IEEE,
pp. 195–206.

[22] KEPE, T. R., DE ALMEIDA, E. C., AND ALVES, M. A.
Database processing-in-memory: an experimental study.
Proceedings of the VLDB Endowment 13, 3 (2019), 334–
347.

[23] LEPERS, B., QUÉMA, V., AND FEDOROVA, A. Thread
and memory placement on {NUMA} systems: Asym-
metry matters. In 2015 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 15) (2015), pp. 277–289.

[24] LIU, M., CUI, T., SCHUH, H., KRISHNAMURTHY, A.,
PETER, S., AND GUPTA, K. Offloading distributed ap-
plications onto smartnics using ipipe. In Proceedings of
the ACM Special Interest Group on Data Communica-
tion. 2019, pp. 318–333.

[25] LOZI, J.-P., LEPERS, B., FUNSTON, J., GAUD, F.,
QUÉMA, V., AND FEDOROVA, A. The linux sched-
uler: a decade of wasted cores. In Proceedings of the
Eleventh European Conference on Computer Systems
(2016), pp. 1–16.

[26] MAHAJAN, K., BALASUBRAMANIAN, A., SINGHVI,
A., VENKATARAMAN, S., AKELLA, A., PHAN-
ISHAYEE, A., AND CHAWLA, S. Themis: Fair and
efficient GPU cluster scheduling. In 17th USENIX

Symposium on Networked Systems Design and Imple-
mentation (NSDI 20) (Santa Clara, CA, Feb. 2020),
USENIX Association.

[27] MONTAZERI, B., LI, Y., ALIZADEH, M., AND
OUSTERHOUT, J. Homa: A receiver-driven low-latency
transport protocol using network priorities. In Proceed-
ings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (2018), pp. 221–235.

[28] ORACLE CORPORATION. Oracle Database In-Memory
with Oracle Database 19c, 2019.

[29] ÖZCAN, F., TIAN, Y., AND TÖZÜN, P. Hybrid transac-
tional/analytical processing: A survey. In Proceedings
of the 2017 ACM International Conference on Manage-
ment of Data (2017), pp. 1771–1775.

[30] O’NEIL, P., O’NEIL, E., CHEN, X., AND REVILAK, S.
The star schema benchmark and augmented fact table
indexing. In Technology Conference on Performance
Evaluation and Benchmarking (2009), Springer, pp. 237–
252.

[31] PENG, Y., BAO, Y., CHEN, Y., WU, C., AND GUO, C.
Optimus: an efficient dynamic resource scheduler for
deep learning clusters. In Proceedings of the Thirteenth
EuroSys Conference (2018), pp. 1–14.

[32] PENG, Y., BAO, Y., CHEN, Y., WU, C., MENG, C.,
AND LIN, W. Dl2: A deep learning-driven scheduler for
deep learning clusters. arXiv preprint arXiv:1909.06040
(2019).

[33] POHL, C., AND SATTLER, K.-U. Joins in a hetero-
geneous memory hierarchy: exploiting high-bandwidth
memory. In Proceedings of the 14th International Work-
shop on Data Management on New Hardware (2018),
pp. 1–10.

[34] RAMNARAYAN, J., MOZAFARI, B., WALE, S.,
MENON, S., KUMAR, N., BHANAWAT, H.,
CHAKRABORTY, S., MAHAJAN, Y., MISHRA,
R., AND BACHHAV, K. Snappydata: A hybrid transac-
tional analytical store built on spark. In Proceedings
of the 2016 International Conference on Management
of Data (New York, NY, USA, 2016), SIGMOD ’16,
Association for Computing Machinery, p. 2153–2156.

[35] SHANBHAG, A., MADDEN, S., AND YU, X. A study
of the fundamental performance char-acteristics of gpus
and cpus for database analytics.

[36] STONEBRAKER, M., ABADI, D. J., BATKIN, A.,
CHEN, X., CHERNIACK, M., FERREIRA, M., LAU, E.,
LIN, A., MADDEN, S., O’NEIL, E., ET AL. C-store:
a column-oriented dbms. In Making Databases Work:
the Pragmatic Wisdom of Michael Stonebraker. 2018,
pp. 491–518.

[37] VAN RENEN, A., LEIS, V., KEMPER, A., NEUMANN,
T., HASHIDA, T., OE, K., DOI, Y., HARADA, L., AND
SATO, M. Managing non-volatile memory in database
systems. In Proceedings of the 2018 International Con-
ference on Management of Data (2018), pp. 1541–1555.

[38] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C.,
AGARWAL, S., KONAR, M., EVANS, R., GRAVES, T.,
LOWE, J., SHAH, H., SETH, S., ET AL. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of
the 4th annual Symposium on Cloud Computing (2013),
pp. 1–16.

[39] VERBITSKI, A., GUPTA, A., SAHA, D., BRAHMADE-
SAM, M., GUPTA, K., MITTAL, R., KRISHNAMURTHY,
S., MAURICE, S., KHARATISHVILI, T., AND BAO, X.
Amazon aurora: Design considerations for high through-
put cloud-native relational databases. In Proceedings
of the 2017 ACM International Conference on Manage-
ment of Data (2017), pp. 1041–1052.

[40] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPEN-
HEIMER, D., TUNE, E., AND WILKES, J. Large-scale
cluster management at google with borg. In Proceedings
of the Tenth European Conference on Computer Systems
(2015), pp. 1–17.

[41] WARE, R., MUKERJEE, M. K., SESHAN, S., AND
SHERRY, J. Modeling bbr’s interactions with loss-based
congestion control. In Proceedings of the Internet Mea-
surement Conference (2019), pp. 137–143.

[42] WU, L., LOTTARINI, A., PAINE, T. K., KIM, M. A.,
AND ROSS, K. A. Q100: The architecture and design of
a database processing unit. ACM SIGARCH Computer
Architecture News 42, 1 (2014), 255–268.

[43] XIAO, W., BHARDWAJ, R., RAMJEE, R., SIVATHANU,
M., KWATRA, N., HAN, Z., PATEL, P., PENG, X.,
ZHAO, H., ZHANG, Q., ET AL. Gandiva: Introspective
cluster scheduling for deep learning. In 13th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18) (2018), pp. 595–610.

[44] ZAHARIA, M., BORTHAKUR, D., SEN SARMA, J.,
ELMELEEGY, K., SHENKER, S., AND STOICA, I. De-
lay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the
5th European conference on Computer systems (2010),
pp. 265–278.

[45] ZAMANIAN, E., YU, X., STONEBRAKER, M., AND
KRASKA, T. Rethinking database high availability with
rdma networks. Proceedings of the VLDB Endowment
12, 11 (2019), 1637–1650.

	Introduction
	HTAP System Architecture
	HTAP Scheduling Policy
	GPU Memory Management
	Least Recently Used (LRU) Replacement Policy
	Two-Level Replacement Policy

	Simulator Implementation
	Evaluation and Results
	Macrobenchmarks
	Microbenchmarks
	Cluster Size
	Ratio of OLAP vs OLTP transactions
	Requests per second

	Sensitivity Analysis

	Future Work
	Conclusions

